New Challenges for Use of Embryonic Stem Cells
The National Institutes of Health’s (NIH) definition of embryonic stem (ES) cells poses new challenges for investigators who seek federal research funding. Current NIH guidelines narrowly define ES cells, as “cells that are derived from the inner cell mass of blastocyst stage human embryos, are capable of dividing without differentiating for a prolonged period in culture, and are known to develop into cells and tissues of the three primary germ layers" (1).
More than 75 such cell lines have been approved to receive federal funding for research. A smaller subset of ES cells, however, has been excluded from funding because it does not meet the narrow definition. ES cells can now be derived from a single blastomere taken from an eight-cell embryo, in a procedure similar to that used during genetic testing on embryos created by in vitro fertilization. After the blastomere is removed, the embryo remains viable and is refrozen. Although this procedure does not destroy human embryos, cell lines derived in this fashion are currently awaiting further review by NIH.
FDA has given Advanced Cell Technology clearance to start clinical trials for macular degeneration this year using cells produced from a blastomere-derived ES cell line. The company was forced to find alternative sources of funding for their trial since their cell line is not eligible to receive federal funds.
In Europe, regulations regarding embryonic stem-cell research differ from country to country. However, a ruling on Mar. 10, 2011, by the European Court of Justice of the European Communities denied patents on ES cells to Oliver Brüstle of the University of Bonn on ethical grounds. The court found that even if cell lines could be established without the destruction of embryos, the commercialization of human embryos was unacceptable, and contrary to public policy. This ruling may push European countries to adopt restrictive policies regarding embryonic stem cells and inhibit the development of ES-based therapies.
Reference
(1) National Institutes of Health, “Guidelines for Research Using Human Stem Cells,” (Bethesda, MD, July 2009), stemcells.nih.gov/policy/2009guidelines.htm
Harnessing mRNA as a Readout to Develop Robust BioPotency Assays
December 12th 2024Transcriptional activity within a cell can be used to evaluate cell response to a ligand or promoter activity within a transgene or plasmid within a cell. Catalent has developed a relative potency bioassay using real-time quantitative reverse transcription (RT-qPCR) in a duplex format to assess relative transcription activity in cells treated with ligands or transgenic vectors. The assay utilizes two fluorescent dyes with minimally overlapping emission spectra that allow real-time monitoring of the gene expression of both target and normalizer genes. The assay does not require purification of the mRNA produced by the cells once lysis has occurred. Normalizing the qPCR cycle thresholds (CT) of the target transcript to the reference transcript allows response curve to be generated and compared to a reference standard. The generation of a four-parameter fit curve analysis from raw qPCR cycle threshold data allows for comparison of relative potency and assessment of suitability based on curve parallelism. The assay platform has been used by Catalent to qualify a repeatable, accurate, linear, and specific bioassay for assessing relative potency.
The Solution Lies with SOLBIOTE™: Achieving Sustainability, a Growing Focus in Biopharma
October 28th 2024The nexus between biopharmaceuticals and sustainability is seemingly far apart, however, it is increasingly recognized as an inevitable challenge. It is encouraged to take a sustainable approach to reducing the environmental impact of the production and supply of medicines while improving people's health; delivering the well-being of people and the planet. Yosuke Shimojo (Technical Value Support Section Manager, Nagase Viita) will unveil how SOLBIOTE™, a portfolio of injectable-grade saccharide excipients, would be a key for the biopharmaceutical development and achieving sustainability for a better future of the industry.
Exploring New and Improved Analytical Methods for Traditional and Unique Modalities
December 12th 2024Biophysical characterization is critical to understand the make-up and behaviors of biologic therapies and vaccines, both early in development and throughout the manufacturing scale-up process. As biologics become more complex in structure, and as scientists improve their understanding of the effects of structure on stability, efficacy, safety, etc., there is a need to develop new and improved analytical methods to characterize biologic products. During this presentation, experts will discuss the latest challenges in biophysical characterization and will present solutions to overcome these challenges.