SAFC Biosciences (St. Louis, MO) has developed a chemically defined cell culture supplement based on the characterization of hydrolysate components proven to provide cell growth and protein production capabilities equivalent to traditional undefined hydrolysate raw materials.
SAFC Biosciences (St. Louis, MO) has developed a chemically defined cell culture supplement as a replacement for undefined plant hydrolysates. The product, Ex-Cell CD Hydrolysate Fusion, is designed for biopharmaceutical cell culture processes using Chinese hamster ovary (CHO), NS0, and Sp2/0 cell lines.
Adding hydrolysates to some cell-culture processes can greatly enhance cell growth and productivity. Today, most hydrolysates used in biopharmaceutical production are derived from plants, such as soybeans and yeast. The difficulty in using them, however, lies in their variability.
“Unfortunately, hydrolysates by their nature are of variable composition, depending on the multitude of factors that influence the composition of biological materials like soybeans, compounded by variability in the hydrolysis process,” said Mike Ultee, PhD, vice president of process sciences for Laureate Pharma, a contract manufacturing organization in Princeton, NJ. “Their heterogeneity has resulted in lot-to-lot variability in their ability to enhance the growth and productivity of cell cultures.”
SAFC’s hydrolysate replacement is intended to resolve the variability problem. The company developed the product by characterizing and defining components within hydrolysates and developing a synthetically produced alternative. They say that the new supplement provides cell growth and protein production capabilities equivalent to traditional undefined hydrolysate raw materials, but with greater reproducibility and lower risk.
“Raw material understanding and characterization is a leading concern for biopharmaceutical manufacturers interested in mitigating risk,” said Bruce Lehr, marketing director for SAFC Biosciences, in a statement.
Ultee noted, however, that the responsiveness of different cell lines to hydrolysates or new chemically defined substitutes varies with one cell line to the next. “So the effect of addition of these materials to a culture needs to be determined for each cell line,” he said.
The Future of Cleanroom Construction: How Hybrid Solutions are Changing the Game
May 14th 2025Imagine a world where cleanroom facilities—essential for pharmaceutical manufacturing, biotechnology, and high-tech industries—are built with unparalleled speed, precision, and efficiency. That world is here, thanks to the hybrid construction approach. By blending traditional stick-built methods with modular and prefabricated solutions, companies are overcoming the limitations of conventional construction while ensuring compliance with stringent industry regulations. In this interview, we explore how hybrid cleanroom construction is transforming the industry, offering faster project timelines, improved quality control, and significant cost advantages. Join us as we delve into this game-changing approach with industry experts who are leading the charge in revolutionizing cleanroom infrastructure.
Mastering Antibody-Drug Conjugates
December 19th 2024In this episode, we explore BIOVECTRA’s capabilities in antibody-drug conjugate (ADC) manufacturing, from complex conjugation chemistry to synthesis of highly potent payloads. We’ll also showcase how BIOVECTRA’s extensive experience in complex chemistries and specialized small molecule manufacturing gives them a unique perspective, strengthening their approach to ADC production and ensuring clients receive custom solutions across all project stages.
Novartis Acquisition of Regulus Therapeutics is Complete
June 25th 2025A key property included in the acquisition is farabursen, an investigational next-generation oligonucleotide targeting the microRNA miR-17 with preferential kidney exposure, intended to treat people with autosomal dominant polycystic kidney disease.