Facility Design and Expansion: Commissioning for Innovation

Many biotech facilities consume more than tenfold the amount of energy used by other institutions. Design a space that is right for your business.
May 01, 2006
Volume 19, Issue 5

Mark N. Yakren, PE
A modern biotechnology facility resembles a living organism, constantly evolving and changing. As research programs change, so do the requirements for equipment, staff, and laboratory space. While the next generation of biotechnology facilities must be adaptable and open to change, these facilities must also contain elements that ensure energy efficient operations and continued reliability in the face of even the most daunting challenges. Meeting these comprehensive requirements requires a design concept that employs the expertise of the biotechnology firm, design professionals, and construction specialists to deliver a facility that is flexible, sustainable, and reliable.


A key variable contributing to the growing demand for flexibility is Big Pharma's growing dependence on the biotechnology industry for cutting-edge pharmaceutical products. As bureaucracy continues to limit the development capabilities of the world's largest pharmaceutical companies, reliance on the biotechnology industry for the research, development, and delivery of new pharmaceutical products has required versatile facilities.

As a result, many smaller biotechnology companies are now aggressively pursuing expansion plans in order to increase their research capabilities, add staff, and procure new equipment. Such expansion requires a flexible design concept to accommodate growth and adapt to the ever-evolving atmosphere of the biotechnology industry.

Flexibility, in many instances, is a relative term. While designing an adaptable facility would be easy with unlimited funds, budgeting plays a prominent role in planning and implementation. As a result, delivering a flexible facility design is directly related to the client's budget and expectations.

ICN Pharmaceuticals, in Costa Mesa, CA, maintained its research operations throughout its renovation process. The new design allows flexibility for future expansion.
In many cases, project design commences without a clear definition of the scope of the work. This lapse in preparation often plagues small companies, which sometimes lack comprehensive in-house facility development experience. Proceeding to the design phase of a project without clear communication about intended goals and specifications of the project can lead to costly change orders, lost efficiencies, and expensive delays. To avoid such costly roadblocks, it is vital to build consensus among the client's management, researchers, and facility management team to meet the diverse goals and expectations of the project.

This can be accomplished by employing qualified and experienced consultants to lead the development of a facility from preliminary meetings with internal users, maintenance personnel, and operations professionals to discuss the specific needs for the project. The project's designers can then consolidate the data into a document called the "Basis of Design" or "Project Definition Statement," outlining the program in terms of architectural, engineering, and construction objectives.

The laboratory at California State University, San Marcos, was designed with flexibility to accommodate various research programs.
Once the guiding principles are identified, the facility's designers can explore the most cost-effective methods of delivering a flexible and expandable site. Employing a flexible design concept also enables the owner to make changes and adapt, due to the ever-changing business climate of the biotechnology industry.

Building a modular design is a popular method for ensuring flexibility. This approach employs a system composed of various interchangeable parts that fit cleanly together. In a modular design, all major equipment is designed and arranged in such a way that new components, such as air handlers, fans, and electrical panels can be easily added or modified in the event of an expansion without major impact on the entire operation.

For example, a laboratory space requires an array of specialty services such as compressed air, vacuum, carbon dioxide, and purified water. By running a loop around the facility and providing take-offs to supply these services to laboratory benches and equipment, the facility can be easily modified and expanded without the need for additional services. As these lines are provided, space should also be allocated for additional utilities to be added in the future, such as natural gas, nitrogen, and many others.

lorem ipsum