Benefits of a Revised Approach to Anion Exchange Flow-Through Polish Chromatography

A high-performance anion exchange resin performs well compared with membranes. In addition, the resin offers greater flexibility and cost savings.
Apr 02, 2011


Anion exchange (AEX) products are commonly used as a polish step in product flow-through (FT) mode to bind impurities. Comparing resins with membranes and membranes to membranes is challenging due to the complicated and unique scale-down model formats of the products offered by different vendors. A novel approach to AEX FT using a short, 5 cm length, packed bed format with a faster operating flow rate is explained. The performance of commonly used AEX resins and membrane adsorbers, detailing dynamic binding capacity performance, efficiency, and a new disposable option for packed bed chromatography are compared. The data presented will show that a high performance AEX resin competes well with the performance of membranes. It provides similar processing times and the added benefits of reusability, ease of packing at different scales in various column formats, and the ability to implement initial process design from early phase manufacturing to commercial manufacturing, reducing overall costs and time to market.

AEX chromatography resins and membrane adsorbers are frequently used for downstream purification in the biotechnology industry. AEX products are used for polish chromatography in product FT mode to bind product-related and process impurities. Multiple product formats are commercially available, including chromatography resins, which are packed into chromatography columns, and membrane adsorbers, which are supplied in self-contained plastic housings. Comparing performance across product types and formats, including resins to membranes and membranes to membranes, is challenging due to the complicated and unique formats for scale-down models of the different product types.

In FT mode, membranes have shown advantages over traditional soft gel packed beds due to faster operating flow rates, reduced buffer requirements, and disposability. In most cases, traditional soft-gel FT columns are sized for the optimization of volumetric throughput to improve operating flow rate and decrease process bottlenecks, rather than sized for actual impurity binding capacity. This results in packed columns with larger diameter, and therefore volume, than optimal, and this improper column sizing results in greater resin requirements and increased buffer usage, both of which impact operating time and cost of goods. Although membranes may be simpler to implement for early phase manufacturing, where the process scale is typically smaller, these products are not always cost effective at the larger, late phase or commercial manufacturing scales due to high material costs and lack of reusability. In addition, the available product formats are limited, posing linear scale-up challenges, adding to the challenge of maintaining process continuity and proving process equivalence between scales. Late-phase process redesign or a complete switch to packed bed chromatography may be required due to high consumable costs or limited product formats not allowing for linear scale-up.

Figure 1: Pressure-flow curve for POROS HQ 50 in 8 cmD Go-Pure Pre-Packed column format at bed heights of 5 cm and 20 cm (5 um frits, 0.1 M NaCl, system pressure subtracted).
On the other hand, the re-use of resins is well established for traditional packed bed chromatography and this facilitates lower overall material costs. In addition, chromatography columns are easily scalable. Unit operations can be defined and locked for early phase manufacturing and then simply scaled up in a linear fashion as manufacturing scale increases reducing the need for later phase redesign. High performance, rigid resins with a higher volumetric throughput capability provide an advantage over soft-gel resins allowing for properly sized columns with smaller footprints similar to membranes. These rigid resins allow for convective flow through the bead, improving mass transfer and increasing efficiency at higher linear flow rates, thereby improving process productivity.

lorem ipsum