QbD and PAT in Upstream and Downstream Processing - BioPharm International talks to industry experts about the implementation of QbD and PAT tools in biopharmaceutical manufacturing - BioPharm


QbD and PAT in Upstream and Downstream Processing
BioPharm International talks to industry experts about the implementation of QbD and PAT tools in biopharmaceutical manufacturing

BioPharm International
pp. 28-37

BioPharm: What measurement tools are typically used to measure CPPs and the resultant process inputs and outputs, including PAT tools, in an upstream process?

McKnight (Genentech): CPPs are a subset of the environmental and batch-recipe settings (e.g., timing of feeds, culture duration) used to perform the process. Temperature and pH, which are commonly CPPs, are measured using on-line probes (a technology that is officially PAT, but far preceding the 'PAT initiative'). Timing of events and generation of basal and feed media are controlled with traditional process controls and standard operating procedures. Online cell-density measurement is an area of active development as is online nutrient measurement technology to enable advanced feeding or timing strategies.

Weber (CMC Biologics): Assuming this question is referring to the monitoring and control of CPPs and not the tools used to actually establish CPPs, the majority of upstream CPPs are monitored online and offline. Online instruments such as CO2 probes are verified against offline instruments to ensure that the conditions within the bioreactor have not caused the probes to 'drift.' Adjustments are made to the online instruments if drift is detected. Other outputs such as cell count and viability are measured strictly offline on a routine basis. PAT tools can be effective, though not necessary, to monitor parameters such as temperature and pH, but are not necessarily value-added for culture health outputs such as viable cell density, viability, or doubling time.

Rathore (IIT Delhi): For upstream process, tools that researchers have used include:
  • Surface plasmon resonance (to assess product concentration and affinity)
  • High-performance liquid chromatography (HPLC) (to assess product concentration and structure)
  • Capillary electrophoresis (to assess product concentration and structure)
  • Dielectric spectroscopy (to determine biomass)
  • In-situ microscopy (to characterize cell population)
  • Flow cytometry (to characterize cell population)
  • Metal oxide field effect transistor (to sense biological contaminants)
  • Infrared spectroscopy (to detect media components)
  • In-situ 2D fluorometry (to detect media components and metabolic end products)
  • Raman spectroscopy (to detect media components and metabolic end products)
  • UV spectroscopy (to measure homogenate components)
  • Mass spectroscopy (to detect metabolic end products)
  • HPLC (to detect media components and metabolic end products).

Not all of these are amenable for online applications, but together they capture various attributes of upstream processing.

BioPharm: Given the inherent variability in biologics manufacturing, how does QbD improve process understanding and control? What are the limitations of QbD in upstream bioprocessing?

McKnight (Genentech): The inherent variability in biologics manufacturing, and the general inability to define mechanistic equations (i.e., mechanistic process models versus empirical process models), limits the ability to precisely predict the outcome of specific runs at manufacturing scale. Application of multivariate, statistically designed experiments, however, is still valuable for identifying CPPs, defining parameter acceptable ranges, and understanding the variability that may be expected from the manufacturing-scale process. Biological variability likely limits the ability to control even the best understood process solely through control of process parameters—the need for some degree of product testing will be necessary to control for inherent variability.

Rathore (IIT Delhi): Implementation of QbD necessitates creation of information relating the process to the product and the product to the clinic. It is this understanding that lays the foundation for appropriate process control. A major limitation that I see with respect to implementation of QbD in upstream processing is the complexity of the sample medium due to the presence of the large variety of process related, host-cell related, and product-related impurities. Another limitation is the fact that the fermentation process is so complex. With the aforementioned, tools it is easy to monitor different process and product attributes. However, many different alterations in operating conditions and raw-material attributes can lead to similar changes in the process outputs and hence monitoring is merely the first and simpler step. The difficulty comes in diagnosing the root cause of variability and effectively dealing with it in real time.

Girard (Spinnovation): Precisely because QbD is a scientific, risk-based, and proactive approach to biologics development, one can use it to define the ideal characteristics of a product to achieve CQAs relating directly to its clinical performance. On the basis of this information, product formulation and processes are designed within a specific framework to ensure the product meets these attributes. Variability within this framework can be monitored allowing scrutiny of the process to assure consistent product quality. However, it is important to consider the CQAs in a matrix since one knows that a biological system has the capability to compensate or adjust its metabolic pathway.

Vanden Boom (Hospira): The enhanced design-space knowledge derived from the systematic risk assessments and design of experiment (DOE) work completed in association with a QbD approach offers the potential to significantly improve the level of process control for mammalian cell culture-derived products. A key factor to realize the full benefit of QbD is the establishment of robust small-scale model(s) of the upstream manufacturing process. This may be more challenging for certain products resulting in limitations to fully using QbD for upstream bioprocessing steps for these products. In the case of biosimilar products, the bioanalytical characterization of the originator product provides another useful input to determine the significance of product and process variability.

Weber (CMC Biologics): A QbD approach can lead to an early focus and understanding of what influences the CQAs. While scale-down models combined with screening and design space DOEs can be used to understand cell expansion and the cell-production bioreactor processes, full purification can be time consuming and costly for full characterization of the upstream process. In addition, as the downstream process is characterized, optimizations/changes in the downstream process can lead to the need to repeat upstream characterization efforts. Hence, the sooner a correlation between the main upstream outputs (such as viability) and primary product quality attributes (such as glycosylation) can be established, bench-scale work can be minimized.

blog comments powered by Disqus



Lilly to Acquire Novartis Animal Health
April 22, 2014
Novartis and GSK Trade Assets
April 22, 2014
Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
EMA Warns of Falsified Herceptin Vials
April 16, 2014
American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
Author Guidelines
Source: BioPharm International,
Click here