Translating Stem Cells From Laboratory to Clinic - Ontario-area scientists discuss approaches to development of stem-cell therapies. - BioPharm International


Translating Stem Cells From Laboratory to Clinic
Ontario-area scientists discuss approaches to development of stem-cell therapies.

BioPharm International
Volume 26, Issue 4, pp. 40-45


Janet Rossant
Janet Rossant, PhD, senior scientist, chief of research, and Lombard Chair in Paediatric Research at the Research Institute, The Hospital for Sick Children.

BioPharm: What are the advantages to studying these types of stem cells, and where do you see them fitting in to the regenerative medicine endeavor?

Rossant: Human embryonic stem cells (ESCs) have been with us for quite a few years. They have been derived from early human embryos derived from in vitro fertilization clinics. These are embryos that would not be used for reproductive purposes. When couples have finished with their fertility treatments, the remaining frozen embryos can be either destroyed or, with the donor's consent, can be used for research. ESCs have been extremely important in showing us the power of these pluripotent cells to generate many different kinds of cells in culture, opening up the possibility that, in the long run, some of those cell types might be used to treat neurodegenerative diseases or traumatic injuries.

There are some issues with ESCs: obviously, there are the ethical concerns about the origins of those cells. Beyond that, given a small bank of ESCs, would we be able to identify a matched patient who required a graft? Obviously not. The new technology of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka and colleagues in 2006 has changed the game in many ways (2). Obviously, the ethical concerns are much less, and now you have the potential to make many different iPSCs from individual patients. In the long run, the hope is that iPSCs could be sources of cells for patient-matched stem-cell therapies. In terms of therapy, however, are pluripotent cells really going to be the future source of stem cells for regenerative medicine? The answer is in some areas yes, and in other areas no. There are already some clinical trials underway with cells derived from ESCs for spinal cord repair and for macular degeneration. There are trials being conducted now, so they can and will be used for certain situations. But for other situations that people are interested in, such as neurodegenerative diseases, I think we're quite a way off from being able to take embryonic stem cells and directly use them as cells to treat patients.

The other exciting aspect of iPSCs is not their direct use for therapies, but their use as models to study the disease process. Because you can take skin cells from a patient who had any kind of disease and make iPSCs from that patient, you now have the ability to model that disease in a dish. For example, if you have a patient with a neurodegenerative disease, and you can make nerve cells from that patient's iPSCs in the dish, you can study the progression of the disease in those nerve cells, and really start to understand what goes wrong in the disease. You can then perhaps develop drugs to treat the disease based on stem cells. I would call that stem cell-related therapies, where you're not actually using the cells themselves as therapy but they become a very important tool to develop treatments for many diseases. That's the advantgage of iPSCs over ESCs. People work on human ESCs to drive their differentiation into different pathways, because they're still the best understood pluripotent cells. With iPSCs, there seems to be more variablity between cell lines when they're made by the induced pluripotent route. We haven't completely nailed the process of reprogramming in those cells, so that we can be sure that they behave like early embryonic cells. There's still a need to keep working with embryonic stem cells. But the two side-by-side become a very powerful tool.

blog comments powered by Disqus



Lundbeck CEO Resigns Due to Code of Conduct Breach
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Janssen Partners with Transposagen Biopharmaceuticals for CAR-T Therapies
November 24, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Author Guidelines
Source: BioPharm International,
Click here