Making the Best Choices in Single-Use Tubing - Jerold Martin considers the types of tubing available to the industry and how to make an informed selection. - BioPharm International

ADVERTISEMENT

Making the Best Choices in Single-Use Tubing
Jerold Martin considers the types of tubing available to the industry and how to make an informed selection.


BioPharm International Supplements
Volume 26, Issue 4, pp. s24-s26

IMPACT OF TUBING ON PROCESS FLUIDS

The primary concern for the tubing's impact on process fluids are biocompatibility, leachables, adsorption–absorption, and permeability of gas and light (particularly ultraviolet light). Biocompatibility is typically assessed by applying the USP Biological Reactivity Tests to the tubing material after a "worst case" sterilization process, either in vivo (<87>, cytotoxicity) (2), or in vitro for Class VI (<88>, implantable) plastics (3). Other standard tests may include pyrogenicity. Recommended standard reference tests for tubing are described in the BPSA component quality test matrices guide (4).

Potential leachables are initially assessed by considering extractables determined under exaggerated process conditions, such as higher temperatures, more aggressive solvents, and longer contact times. The maximum sterilization process conditions should also be included (typically >125 C steam autoclave or 50 kGy gamma irradiation) because these factors can increase the level of process leachables from some tubing. Similarly, the impact of heat welding on leachables should also be included in extractables assessments. For more information on determination of tubing extractables data, see the 2008 and 2010 BPSA extractables guides (5, 6).

Adsorption, where target molecules bind to tubing contact surfaces, is a primary concern with protein molecules, but the relative smallsurface area to volume ratio typically limits protein concentration losses to only highly dilute solutions. Absorption, where target molecules migrate into the tubing solid phase itself, are a greater concern with small molecules such as preservatives, which are generally limited to final formulations, but should be assessed for tubing used at that stage of the process. Low permeability tubing (for gases and light) can also provide reduced absorption of small molecules.

Although particles in tubing used in upstream processes (media, buffers and intermediates) upstream of filters have not been a major concern, applying single-use systems to aseptic vaccine manufacturing or in post-filtration formulation and filling of biopharmaceuticals has raised concerns about the potential impact of particles from tubing fill lines on final dosages. Extrusion of tubing is generally a low particle-generating process, but handling, cutting, joining, and environmental conditions for single-use system assembly can have an impact. Particle levels from tubing in systems used downstream of final filtration should be considered in critical applications.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
USP Center in Ghana Receives International Lab Accreditation
August 15, 2014
USP Awards Analytical Research
August 15, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
Guilty Plea to Importing Illegal Cancer Drugs
August 15, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here