When the Process Becomes the Product: Single-Use Technology and the Next Biomanufacturing Paradigm - The move to single-use manufacturing has prompted a paradigm shift in facility design. - BioPharm

ADVERTISEMENT

When the Process Becomes the Product: Single-Use Technology and the Next Biomanufacturing Paradigm
The move to single-use manufacturing has prompted a paradigm shift in facility design.


BioPharm International Supplements
Volume 26, Issue 4, pp. s27-s30

PARADIGM SHIFT

The major adoption drivers for the biopharmaceutical industry were the availability of manufacturing-grade and scaled-up single-use systems, the opportunity to reduce CAPEX and OPEX costs, the acceleration of construction projects, and the reduction of the overall qualification and validation effort. Multiple publications comparing traditional with single-use technology have calculated a CAPEX saving of up to 60–70% and an OPEX saving up to 20–25% (4–6).

The flexibility of the disposable options available on the market makes their implementation seamless since they can easily be customized to meet the requirements of an already designed facility. In addition, the high number of different disposable options in various functional areas allows the Pilot Plant to be a very flexible production unit and to respond to different project requirements (7).

The evolution of single-use technology was developed in parallel with new modular facility construction concepts made up of pre-assembled modules. The main advantage of modular construction is the significant reduction of construction time compared with traditional construction techniques.

Interestingly, despite adopting new single-use technologies, the biopharmaceutical industry has maintained the basic facility layout stemming from the traditional stainless-steel facilities. This statement holds true even for facilities built out of pre-assembled modules. The drivers for choosing the traditional layout are based on regulatory requirements, risk mitigation in hybrid approaches between single-use and traditional technologies, and simply following past behaviors (8).

This traditional approach still results in complex facility layouts, which require multiple heating, ventilation, and air conditioning (HVAC) systems and elaborate flows of goods and personnel. Hence, the benefits offered by single-use systems and modular facility construction techniques were and are only partially realized.

Today, the evolution of single-use technologies offers the possibility to close the entire upstream process and downstream process up to the isolation of the drug substance. Hence, no open handling steps are required in facilities operating either with traditional stainless-steel technology or with hybrid approaches using traditional and single-use technologies. The only remaining open handling step is the thawing of a cell vial at the start of the process, although some researchers are already investigating the possibility of storing cells in bags.

The possibility of isolating the entire manufacturing process from the environment primes a major paradigm shift in the biopharmaceutical industry. While in the past, individual groups developed their processes for the unit operation they were responsible for (i.e., a silo approach), today, the new approach is to integrate all unit operations into one end-to-end manufacturing process (i.e., a holistic approach). The holistic approach enables the architecture of the manufacturing process and the integrated single-use technologies to be installed such that risks to the process stemming from operator interaction can be minimized. This is a major breakthrough when taking into consideration that the operator is the primary source for contamination and process deviations. In that sense, the process itself becomes the product.

This paradigm shift should prompt a review of the traditional facility layout to translate the benefits stemming from entirely closing the manufacturing process and the reduction of operator-linked risks into major CAPEX and OPEX reductions, which will dramatically affect the COGS of a drug.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

NIH Seeks to Improve Vaccine Response with New Adjuvants
September 30, 2014
New Report Details Players and Pipelines in the Biosimilar Space
September 30, 2014
Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
FDA and NIH Win Award for IP Licensing of Meningitis Vaccine
September 26, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here