Overcoming Challenges in the Reconstitution of a High-Concentration Protein Drug Product - The authors present approaches used to reduce reconstitution time of a lyophilized high-concentration protein

ADVERTISEMENT

Overcoming Challenges in the Reconstitution of a High-Concentration Protein Drug Product
The authors present approaches used to reduce reconstitution time of a lyophilized high-concentration protein drug product.


BioPharm International
Volume 26, Issue 3, pp. 28-39

RESULTS

Vial size and FDS dilution


Table II: Effects of vial size and dilution on reconstitution. FDS is formulated drug substance, WFI is water for injection.
Initial attempts to shorten the reconstitution by adding salt or surfactant to WFI were unsuccessful (data not shown), hence other strategies were contemplated. First, using a larger vial (and therefore, a larger surface area) should reduce the reconstitution time. Second, diluting the FDS before freeze-drying should reduce the reconstitution time, because Shire et al. showed that decreasing protein loading concentration resulted in a less dense cake that reconstituted more readily (1). When six groups of samples with various vial sizes and FDS dilutions were freeze-dried in one cycle, the cake from the undiluted FDS reconstituted faster when placed in a 50 mL vial (4.6 min) than it did in a 20 mL vial (6.4 min) (see Table II). Furthermore, the cake from the diluted FDS reconstituted significantly faster than that from the undiluted FDS, regardless of the vial size employed.

However, combining both the larger vial with the FDS dilution provided no additive effect in reducing the reconstitution time. The reconstitution time (~3 min) is essentially the same with either a 20-mL or a 50-mL vial at 2-fold dilution of the FDS. Because of the higher production cost associated with a bigger (50 mL) vial (because fewer vials can be produced in a given lyophilizer), the smaller (20 mL) vial with the diluted FDS was a viable scenario. The reconstituted time was reduced 37% and 52% when the FDS was diluted 1.5-fold and 2-fold, respectively, in a 20-mL vial. To minimize the cycle length, a 1.6-fold dilution of the FDS was chosen. This dilution would yield a solution containing 25 mg/mL FDS, which would substantially reduce the original reconstitution time without necessitating a lengthy freeze-drying cycle.


Figure 1: Representative lyophilized vials from Table II.
To minimize changes in the manufacturing process of 40-mg/mL FDS at 5.5 mL-fill that had previously passed FDA inspection, the 25-mg/mL FDS was manufactured by performing a 1.6-fold dilution of the existing 40-mg/mL FDS instead of being formulated from scratch. Each vial was filled with 1.6-fold volume (5.5 x 1.6 = 8.8 mL) of the diluted FDS. After lyophilization, the DP was reconstituted with the same volume of 2.3-mL WFI to yield the identical 80-mg/mL solution as the original process. The DP from the 8.8-mL fill was referred as the tall cake, and that from the original 5.5-mL fill as the short cake (see Figure 1). The lyophilization cycle for the 40-mg/mL FDS was previously described. Following is the cycle development for the 25-mg/mL diluted FDS.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

GSK Submits EU Regulatory Filing for Malaria Vaccine Candidate
July 29, 2014
Bristol-Myers Squibb and Ono Pharmaceutical Collaborate on Immunotherapies
July 28, 2014
FDA Accepts First Biosimilar Filing
July 24, 2014
Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
Author Guidelines
Source: BioPharm International,
Click here