Bioconjugates: The Adaptable Challenge - Conjugation of a biologic to a carrier molecule can solve problems in solubility and stability, but introduces its own set of challenges. - BioPharm

ADVERTISEMENT

Bioconjugates: The Adaptable Challenge
Conjugation of a biologic to a carrier molecule can solve problems in solubility and stability, but introduces its own set of challenges.


BioPharm International
Volume 26, Issue 1, pp. 34-38

ALTERNATIVES TO PEG

Possible alternatives to PEGylation include, for example, HESylation, XTENylation, HSAylation, acylation, PASylation, and glutamylation. The conjugation of peptides to hydroxyethyl starch (HES), XTEN (a polypeptide), human serum albumin (HSA), lipids (acylation), poly-Pro-Ala-Ser (PAS), or polyglutamic acid (glutamylation) avoids the toxic issue of PEG because they all can be biologically degraded and excreted. Like PEGs, most of these reagents can be customized to exhibit different release profiles.

HES has been used as a plasma expander for many years and is considered to have an exceptional safety profile. Acylation usually involves the conjugation of a peptide to a naturally occurring fatty acid (e.g., palmitic acid) and does not seem to present any toxicological issues. Liraglutide (Victoza), a palmitated peptide, was approved in January 2010 for the treatment of type-2 diabetes.

Despite the advantages of some of these other conjugates, they have a number of challenges. The conjugates based on polypeptides (XTEN, HSA, PAS, polyGlu) are potentially immunogenic, but there is substantial evidence that such immugenicity is not realized in vivo. A number of the alternative conjugate molecules face similar economic challenges to PEG. Companies involved in the development of these alternative conjugates need to offer them at substantially lower costs than PEG to make them viable alternatives. The availability of identical, activated polymers from multiple sources would be beneficial to mitigate vendor risk and improve economic viability; however, as long as the respective polymers and linkers are patented, most innovators will remain exposed to the well-known risks of single sourcing of raw materials. Contingency plans for secondary supply should not only benefit innovators, but vendors as well by providing a secure supply of activated polymer.

Both HESylation and PEGylation lead to polydisperse bioconjugates that present unique analytical challenges. Polydisperse conjugates have broad peaks and, in the case of PEG and HES, they tend to have low UV adsorption making it difficult to detect peptide impurities generated in the manufacture of the peptide or during conjugation (5). From an analytical stand point, the ability to link a conjugate to a peptide with a reversible linker would be attractive, although a reversible linker may compromise the pharmacokinetics of the bioconjugate.

Currently, PEGylation for peptide and proteins involves two main families: lysine-active PEGs and sulfhydryl-selective PEG reagents. Examples of lysine-active PEGS include NHS esters. The rate of coupling of a lysine-active PEG increases as the pH is raised; however, peptides are not stable at high pH and therefore a balance between peptide stability and rate of coupling has to be met. Coupling involves the formation of a peptide bond between the side chain NH2 functional group of lysine and the carbonyl portion of the succinimide. All of the lysine-active derivatives, except aldehydes and ketones, can possibly react with other amino acids, such as imidazole groups of histidine and hydroxyl groups of tyrosine, and therefore in the case of site specific PEGylation, a differential protection strategy may be necessary. Aldehyde- and ketone-based lysine-active PEGs are selective for primary amines.

Examples of sulfhydryl-selective PEG reagents involve maleimides, vinyl sulfones, and thioethers. Sulfhydryl-selective PEG reagents attach to the thiol group of a cysteine. Because of the lower abundance of cysteine amino acids (i.e., the second least common amino acid) in peptides, more selective PEGylation can be achieved.

Both types of bonds are fairly strong and difficult to reverse. The ultimate reversible linkage would involve conjugation that can be removed in vitro but is stable enough in vivo. Reversible, disulfide linkages are also selective to thiols; however, they are susceptible to reduction by biological reducing agents such as glutathione. Although disulfide linkages could be reduced chemically to enable analysis of the peptide after conjugation, the possibility of the bioconjugate being reduced in vivo presents a major challenge. The use of a conjugate-maleic-anhydride for conjugation to peptide would allow for the later removal of the conjugate by treatment with mild acid at room temperature (6). Bentley et al. and Greenwald et al. have shown that conjugation with PEG NHS esters can be reversed by hydrolysis under mild acid conditions (6). Zalipsky et al. showed the release of the PEG from a PEG bioconjugate using mild reducing conditions (6).

In the case of PEGylated bioconjugates, use of analytical techniques such as enzymatic digestion and Edman degradation may enable selective cleavage of the PEG-peptide bond. This technique may only be applicable for smaller bioconjugates. The PEG conjugate bound to the peptide creates hindrance to the proteolytic enzymes and, thereby, prevents specific cleavage of the PEG-peptide bond. On the contrary, Edman degradation typically results in cleavage of a peptide bond at adjacent amino acids to the PEG, resulting in a missing amino acid. Veronese (2001) has stated these difficulties could be reduced by the use of a PEG conjugate with a methionine in the side arm that is bound to an amine on the peptide. Cyanogen bromide treatment can be used to break the peptide-methionine linkage and allow independent analysis of the peptide (5).

An alternative would be the formation of a bioconjugate linkage that can be enzymatically digested using nonmammalian enzymes. This mechanism would enable the removal of the polymer in vitro in order to perform the desired analytical testing on the peptide component. Moreover, the selectivity of degradation of the conjugate-peptide bond by nonmammalian enzymes would not affect the in vivo stability of the bioconjugate.

For conjugates that are currently manufactured recombinantly as fusion proteins with XTEN, HES, and other polypeptides, there is the possibility for developing chemical technology that would create a fusion peptide (i.e., linkage through peptide bond) that could potentially be manufactured by both chemical conjugation and by direct recombinant expression. The chemical synthesis of a fusion peptide would involve chemical ligation technologies, which may include click chemistry, native chemical ligation, and Staudinger ligation. This mechanism would create substantial economies in developing and clinically testing pre-proof-of-concept.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
Manufacturing Issues Crucial to Combating Ebola
November 20, 2014
FDA Requests Comments on Generic Drug Submission Criteria
November 20, 2014
USP Joins Chinese Pharmacopoeia Commission for Annual Science Meeting
November 20, 2014
Author Guidelines
Source: BioPharm International,
Click here