Allogeneic Versus Autologous Stem-Cell Therapy - The author discusses potential manufacturing costs and commercialization challenges of allogeneic and autologous stem-cell therapy. - BioPharm

ADVERTISEMENT

Allogeneic Versus Autologous Stem-Cell Therapy
The author discusses potential manufacturing costs and commercialization challenges of allogeneic and autologous stem-cell therapy.


BioPharm International
Volume 25, Issue 7, pp. 36-40

CONCLUSION

At present, allogeneic stem-cell therapy appears to be the more commercially attractive option for companies to pursue, both in terms of its manufacturing costs and logistics as well as in terms of its business potential because it will in essence be available as an "off-the-shelf" product, meaning it could be used in both acute and chronic disease settings. Yet, for certain medical conditions, autologous therapy is likely to prove the only feasible therapeutic option and still support an acceptable pharmacoeconomic calculation.

In the coming years, greater regulatory guidance is likely to be published on the production of cell-based therapies, which may more clearly define how allogeneic and autologous therapies should be manufactured, thereby allowing a clearer picture to emerge about therapy production costs and logistics. The field of cell therapy manufacturing is also advancing swiftly, meaning that improved large-scale, automated manufacturing technologies can be expected, which should positively affect the cost and logistical difficulties underlying cell-based therapy production.

ACKNOWLEDGMENT

This paper is based on the author's thesis submitted for a Master's in Bioscience Enterprise degree at the Univ. of Cambridge. The author thanks Dr. Catherine Prescott and Dr. Ruth McKernan for their supervision and support.

Dr. Nafees N. Malik, MB, ChB, MPhil (Camb), CSci, is an external lecturer at the Institute of Biotechnology at the University of Cambridge,
.

REFERENCES

1. M. Körbling and Z. Estrov, N. Engl. J. Med. 349 (6), 570–582 (2003).

2. D. Srivastava and K.N. Ivey, Nature 441 (7097), 1097–1099 (2006).

3. C. Aguayo-Mazzucato and S. Bonner-Weir, Nat. Rev. Endocrinol. 6 (3), 139–148 (2010).

4. O. Lindvall and Z. Kokaia, J. Clin. Invest. 120 (1), 29–40 (2010).

5. R. McKernan, J. McNeish and D. Smith, Cell Stem-Cell 6 (6), 517–520 (2010).

6. C. Mason, Regen. Med. 2 (1), 11–18 (2007).

7. L. Jackson, D.R. Jones, P. Scotting and V. Sottile, J. Postgrad. Med. 53 (2), 121–127 (2007).

8. E. Fossett and W.S. Khan, Stem-Cells Int'l., Article ID 465259, 2012. doi:10.1155/2012/465259.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
USP Center in Ghana Receives International Lab Accreditation
August 15, 2014
USP Awards Analytical Research
August 15, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
Guilty Plea to Importing Illegal Cancer Drugs
August 15, 2014
Author Guidelines
Source: BioPharm International,
Click here