Optimizing Drug Delivery for Modern Biologics - This article discusses potential opportunities to improve the patient experience through formulation and delivery device technologies. - BioPharm


Optimizing Drug Delivery for Modern Biologics
This article discusses potential opportunities to improve the patient experience through formulation and delivery device technologies.

BioPharm International
Volume 25, Issue 5, pp. 30-32

Increasing the administered volume of drug product offers the ability to deliver a larger dose, but this approach can have disadvantages. There are limitations to how rapidly a volume of drug can be injected subcutaneously. Although the optimal injection time may vary greatly by individual drug product, and the literature regarding the relationship between injection volume and speed is limited, the subcutaneous space cannot necessarily tolerate rapidly injecting larger and larger dose volumes as tissue disruption and site reaction may occur. Second, if the injection is rapid and the volume is too large, there is potential for the product to leak back from the injection site, reducing the bioavailability relative to the total dose. Lastly, a larger volume of product may require a larger device for self-delivery, and, potentially, a longer injection time, neither of which is likely to be desirable, especially in a crowded therapeutic class.

A potential solution to large-volume injection challenges is the development and use of systems that administer the dose into the subcutaneous space more slowly. Such systems have the potential to expand the possibilities for self-injection. Due to the longer duration of injection, the device or system may need to be temporarily attached to the body at an appropriate injection site; thus, the current industry interest in patch-injection technologies.

Such systems use a bladder, cartridge, or other container for the drug product, which may either be prefilled or user-filled. The mechanism to force the drug product into the body may be purely mechanical or electromechanical. Due to the widely varying properties of drug products, which can influence the optimal injection time, systems should be easily adaptable to the demands of the drug-product developer (e.g., changing the system mechanism or varying the programming of an electromechanical system).

Patch-injector systems specifically can potentially allow for less frequent administration of products already approved for self-injection and for porting of products approved for IV administration to subcutaneous self-injection. In the case of the former, a larger dose can be given by a single injection less frequently than currently approved, more frequent regimens, except in the case where dose-limiting toxicities may exist. The latter can be performed by concentrating the existing formulation or by using the already-formulated dosage strength in conjunction with a larger-volume injection.

Technologies that allow for delivery of higher drug product doses may be applicable to certain emerging needs for mAb products. For instance, the potential to coformulate (i.e., containing more than one mAb product in a single dose), may be a significant area of investigation to create next-generation therapeutic options. A major limitation for some solutions is viscosity, which can be significantly higher than would be expected for a normal mAb solution. The ability to deliver such products in higher volumes may increase the attractiveness of pursuing combination drug products.

In conclusion, the development of mAb products to address patient needs is complicated by the many physical and chemical factors inherent to such drug-product solutions. Limitations imposed by existing formulation strategies and the dose volume that can be delivered by devices may make some products less attractive than currently approved therapies or less likely to gain user acceptance, even in areas of unmet need. Innovative delivery systems that address the challenges of higher-volume delivery may enable drug manufacturers to develop products that use more desirable dosing and IV administration regimens.

Bart E. Burgess is manager, of business development, Self-Injection Systems, at West Pharmaceutical Services, tel. 610.594.3295,

blog comments powered by Disqus



FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here