Development of an Alternative Monoclonal Antibody Polishing Step - The authors describe a mAb polishing step using salt tolerant interaction membrane chromatography. - BioPharm International

ADVERTISEMENT

Development of an Alternative Monoclonal Antibody Polishing Step
The authors describe a mAb polishing step using salt tolerant interaction membrane chromatography.


BioPharm International
Volume 25, Issue 5, pp. 34-46

CONCLUSION

The application of the STIC membrane adsorber enables an alternative polishing platform for monoclonal antibodies. An operating window of STIC in a flowthrough mode has been established through the use of high throughput screening and optimization on 96-well plates in a relatively short time frame. Acceptable product recovery and efficient clearance of host cell proteins, leached protein A, DNA, and high molecular weight species have been demonstrated on STIC Nano using four model proteins. The possible implication of HMW removal through STIC has been addressed. This simple and efficient polishing step can be integrated into current mAb production platforms.

ACKNOWLEDGMENTS

The authors would like to thank Greg Liebisch of the Cell Expression/Scale-up team for providing harvested cell culture fluid used in this study. The authors also thank David Zhou, Dr. Yujing Yang and Dr. Uwe Gottschalk at Sartorius Stedim Biotech for providing STIC 96-well plates and for helpful discussion.

Yun (Kenneth) Kang* is a principal scientist and head of the Purification Team in BioProcess Sciences; Stanley Ng is a principal research associate in BioProcess Sciences; Julia Lee is a senior research associate in BioProcess Sciences; Josaih Adaelu is a principal research associate in Process Development; Bo Qi is a director in Process Development; Kris Persaud is a director in BioProcess Sciences; Dale Ludwig is a vice president in BioProcess Sciences; and Paul Balderes is a director in BioProcess Sciences, all at ImClone Systems, a wholly-owned subsidiary of Eli Lilly and Company, New York, NY. *To whom correspondence should be addressed,
.

PEER REVIEWED

Article submitted: Oct. 4, 2011.
Article accepted: Oct. 28 2011.

REFERENCES

1. D. K. Follman and R. L. Fahrner, J. Chromatogr. A 1024 (1,2), 79–85 (2004).

2. A. Groenberg, et al., BioProcess Intl. 5 (1), 48–56 (2007).

3. B.D. Kelley, Biotechnol. Prog. 23 (5), 995–1008 (2007).

4. A.A.Shukla et al., J Chromatogr. B 848 (1), 28–39 (2007).

5. B.D. Kelley, G. Blank, and A. Lee, "Downstream Processing of Monoclonal Antibodies: Current Practices and Future Opportunities," in Process Scale Purification of Antibodies, U. Gottschalk, Ed. (John Wiley & Sons, Inc., Hoboken, NJ, 1st ed., 2009), pp. 1–23.

6. L. Giovannoni, M. Ventani, and U. Gottschalk, BioPharm Intl. 21 (12), 48–52 (2008).

7. J. Glynn et al., supplement to BioPharm Intl. 23 (3), s4–s10 (2010).

8. S. Ghose et al., "Integrated Polishing steps for Monoclonal Antibody Purification," in Process Scale Purification of Antibodies, U. Gottschalk, Ed. (John Wiley & Sons, Inc., Hoboken, NJ, 1st ed., 2009), pp. 145–167.

9. Y. Li, et al., "Development of a Platform Process for the Purification of Therapeutic Monoclonal Antibodies," in Process Scale Purification of Antibodies, U. Gottschalk, Ed. (John Wiley & Sons, Inc., Hoboken, NJ, 1st ed., 2009), pp. 187–201.

10. H. Yang, et al., presentation at 241st ACS National Meeting & Exposition (Anaheim, CA, 2011).

11. R.L. Fahrner, et al., Biotechnol. Genet. Eng. Rev. 18, 301–327 (2001).

12. B.D. Kelley, et al., Biotechnol. Bioeng. 101(3), 553–566 (2008).

13. J. H. Knox and H. M. Pyper, J. Chromatogr. A 361 (1), 1–30 (1986).

14. D.S.M. Strauss, et al., Biotechnol. Bioeng. 104 (2), 371–380 (2009).

15. J.X. Zhou and T. Tressel, supplement to BioProcess Intl . 3 (9), 32–37 (2005).

16. J.X. Zhou, and T. Tressel, Biotechnol. Prog. 22 (2), 341–349 (2006).

17. J.X. Zhou, T. Tressel, and S. Guhan, supplement to BioPharm Intl. 20 (2), s26–s35 (2007).

18. C. Boi, J. Chromatogr. B. 848 (1), 19-27 (2007).

19. R. Faber, Y. Yang, and U. Gottschalk, supplement to BioPharm Intl. 22 (10), s11–s14 (2009).

20. W.T. Riordan, et al., Biotechnol. Prog. 25 (6), 1695–1702.

21. A. Mehta et al., presentation at 241st ACS National Meeting & Exposition (Anaheim, CA, 2011).

22. N. Fraud, et al., BioPharm Intl . 23 (8), 44–52. (2010).

23. S.R. Holmes-Farley et al., J.M.S.–Pure Appl. Chem. A36 (7–8), 1085–1091 (1999).

24. H. L. Knudsen et al., J. Chromatogr. A 907 (1–2), 145–154 (2001).

25. Y. Yao and A.M. Lenhoff, J. Chromatogr. A 1126 (1–2), 107–119 (2006).


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Author Guidelines
Source: BioPharm International,
Click here