Development of an Alternative Monoclonal Antibody Polishing Step - The authors describe a mAb polishing step using salt tolerant interaction membrane chromatography. - BioPharm International

ADVERTISEMENT

Development of an Alternative Monoclonal Antibody Polishing Step
The authors describe a mAb polishing step using salt tolerant interaction membrane chromatography.


BioPharm International
Volume 25, Issue 5, pp. 34-46

Transition from 96-well plates to capsules


Figure 6
There are three layers of STIC membrane in 96-well format compared with 15 layers in the Nano capsule, which has the same number as the large-scale STIC devices. An equivalent fold of impurity removal was achieved using Nano capsules compared to 96-well plates with the same process load under identical operating conditions as shown in Figure 6. This might be due to the fact that interactions between antibodies and STIC ligands vary with solution conditions, not with the number of layers of membrane or membrane volume. Parameters collected on the 96-well plate can thus be applied to Nano capsule. However, as reported previously, the antibody loading capacity (or process capacity) is dependent on both solution conditions and membrane volume or number of layers (24). The DLC should be determined from a small STIC membrane capsule such as Nano or Pico, which can be directly applied to larger membrane adsorbers.

Removal of HMW species using STIC membrane adsorber

All four model mAbs were derived from stable CHO cell lines and partially purified using MabSelect SuRe resin under current platform operating conditions. It was reasonable to believe that the host cell protein profiles in these protein A-purified materials were similar. The highest HCP load was, 578 ppm, or 0.578 mg in 1 g of antibody (in the case of Mab-T). In addition, residual DNA and leached protein A only accounted for a small portion of STIC binding capacity (data not shown). The STIC binding sites could not be saturated by residual impurities at a process load of 1 g antibody/mL-STIC. The mechanism behind the lower HCP clearance during Mab-T STIC purification was therefore investigated.

Since HMW species may, through multiple-site attachment, have greater avidity to the AEX resin or membrane adsorber than the monomers, AEX in a flowthrough mode was used for HMW removal as previously reported (12, 17). Practically, the removal efficiency through AEX in a flowthrough mode varies with different antibodies. For some antibodies, HMW can be reduced to a very low level while in other cases HMW removal is not efficient, and in some extreme cases, HMW reduction is not observed at all. Thus HMW removal is challenging and should be evaluated for each case. Additionally, HMW removal with AEX resins may be limited by steric hindrance (25), indicating a potential issue with respect to loading capacity. In the case of membrane chromatography, the mechanism of mass transfer is convective flow. Therefore, the HMW binding capacity on STIC is expected to be much higher.


Figure 7
Figure 7 shows HMW removal from partially purified Mab-T with 1.49% HMW in the load, assessed by SE–HPLC. The HMW in flowthrough was 0.99% with a load of 2.0 g Mab-T/mL-STIC. The amount of HMW bound to STIC in this experiment was 10 mg. However, as expected, HCP removal efficiency decreased slightly as the residual HCP in the flowthrough was 40 ppm. In this case, the HMW species might have stronger interactions with STIC than HCPs. The saturation of binding sites on the membrane adsorber by the HMW species prevented further removal of trace impurities. However, for the three other antibodies tested, either the HMW level in the load was low or only minimal HMW removal was observed, and a much higher process capacity was achieved (based on HCP breakthrough). Thus, caution should be taken if HMW species at an elevated level (>5%) are applied to the membrane chromatography. A competitive binding analysis of HMW species and other trace impurities should be performed. If STIC offers the same or higher clearance of HMW compared to other impurities, process capacity might be compromised. Depending on the scale of purification production, different strategies can be used to mitigate the issue. Membrane chromatography in flowthrough mode with different mechanisms such as hydrophobic interaction can be incorporated. In addition, multiple cycles of STIC operation can be used to provide enough manufacturing capacity.

Prediction on large-scale purification production


Figure 8
Figure 8 presents a mAb purification production scenario using STIC as an alternative polishing step at large scale. In this theoretical case, the starting materials are proteins partially purified using a protein A column from 11,000-L HCCFs at a titer of 5 g/L. The antibody load for STIC is 50 kg. Four cycles of 5-L STIC membrane adsorber operation can provide enough production capacity for Mab-D, Mab-K and Mab-S. Unfortunately, application of STIC to Mab-T in large scale is predicted to be challenging due to its lower process capacity or higher residual HCP level. Incorporation of a HMW mitigation step in the process would be required before being applied to STIC.


Table III
The major characteristics of STIC membrane adsorbers are further compared with traditional AEX columns in Table III. A smaller membrane adsorber device can provide required production capacity, and reduce the plant footprint. As a single-use system, the STIC membrane adsorber avoids issues experienced in the packing, unpacking, cleaning, and storage of traditional chromatographic columns. Significant amounts of consumables (e.g., water for injection, buffers, cleaning solutions) are saved and, more importantly, less related labor is required when membrane chromatography is used. In contrast to the major development effort that AEX chromatography requires, process development for STIC membrane adsorber is simple and efficient as demonstrated in the previous sections. Furthermore, the integrity of the membrane adsorber can be assessed using a pre- and post-use filter integrity test protocol, which is straightforward compared to the HETP test used in traditional chromatographic columns. Lastly, because of its unique hydrodynamic characteristics, membrane adsorbers can operate at a much shorter residence time or higher operating flow rate than columns, thus reducing overall processing time and costs. Therefore economic benefits can be achieved using membrane adsorbers for manufacturing of antibodies as described previously (22).

In summary, STIC provides an alternative to the current AEX polishing step. The two-column production platform can be shortened by removing the pre-AEX TFF or dilution step. It is extremely valuable for antibodies which have solubility issues at low ionic strength conditions. In addition, fast screening and optimization followed by process capacity determination in this article suggests an extremely short development timeline. More importantly STIC can be incorporated into our current platform in a "plug and play" development approach.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Merck KGaA Announces Acquisition of Sigma-Aldrich for $17 Billion
September 22, 2014
Pandemic Vaccine Facility Dedicated in Texas
September 19, 2014
Guideline Delineates How to Implement GS1 Standards to Support DSCSA
September 19, 2014
GSK Fined in China Bribery Scandal
September 19, 2014
GPhA Supports Restricted Access Bill
September 18, 2014
Author Guidelines
Source: BioPharm International,
Click here