Meeting Challenges in Contract R&D - Representatives from leading CROs weigh in on key challenges tied to the biopharmaceutical R&D, including issues regarding bioequivalence, platform


Meeting Challenges in Contract R&D
Representatives from leading CROs weigh in on key challenges tied to the biopharmaceutical R&D, including issues regarding bioequivalence, platform technologies, process analytics, and more.

BioPharm International Supplements
Volume 25, Issue 3, pp. s12-s19

Process analytical technologies

BioPharm: Along these lines, have you witnessed more interest in process analytical technologies (PAT) from sponsor companies? Has your company applied PAT to date or does it plan to?

Kauffman (Lancaster Labs): Lancaster Laboratories has witnessed interest from sponsors and contract manufacturing organizations (CMOs) in using PAT for biopharmaceutical production. Quality-by-design (QbD) processes are used in bioreactors, for example. Although rapid sterility and mycoplasma testing approaches are coming to fruition, the technology is not here at this time to measure other important parameters such as post-translational modifications or adventitious viral agents in real time.

Breau (MPI): Not yet. The presumed future increase in the need for PAT services will be driven as FDA's QbD initiative evolves. We have not seen a dramatic increase in the request to characterize raw materials or other process components.

Platform approaches

BioPharm: What is your take on platform technologies to develop and test biopharmaceutical products? Can you offer a CRO's perspective on the pros and cons of such an approach?

Gillett (Charles River): In many ways, platform technologies are both beneficial and essential in the CRO setting to enhance productivity. Processes ranging from immunoassay development to telemetered data collection are constantly improved to increase efficiency. These efficiencies evolve into beta testing and standard operating procedures (SOPs). For example, Charles River recently pushed its reporting timelines to a new standard through platform technologies.

Sponsors could save cost and gain efficiency if one set of 'platform; toxicology data could support multiple products (e.g., a number of agents based on similar chemistry). But implementing this concept is more difficult than it sounds because small chemistry changes can make profound changes in drug distribution and drug effects. Consequently, regulators have been cautious about accepting platform data and generally require individual toxicology programs for each drug substance. We may see a shift in regulatory approach as FDA's modernization program gains momentum and as more data accrues on novel agents, such as gene therapy vectors, or on classes such as biosimilar monoclonals.

Kauffman (Lancaster Labs): There are definitely benefits in the platform technology approach. If a process is well understood and can be applied to produce an array of biopharmaceutical products, then it may, for example, be possible for the sponsor to reduce the amount of viral clearance testing performed on all products manufactured using the same processing platform. Transfer and validation of methods also can be expedited and streamlined. However, one size does not fit all, and it is not always easy to predict when a platform technology will apply. A small change in a process or product may go undetected in a platform method, and this could end up taking more time on the back end to redevelop and validate methods.

Breau (MPI): Novel platform technologies are developed because, presumably, they confer some advantage in certain applications over the alternative competing platforms. MPI conducts a return-on-investment (ROI) analysis to assess whether we should invest in the platform. We are careful in assuring that a thorough assessment is completed before an investment is made.

Sponsors must be aware that moving forward with a cutting-edge platform that could fail or be removed from the marketplace may cause significant rework and delays in development plans. The sustainability of a new platform must be taken into account, as well as the novel advantages that it may confer.

Reason (SGS): Platform analytical technologies, at certain levels are appropriate and can be applied to a wide range of products. However, the more advanced methodologies have to be tailored to suit specific circumstances, particularly with wide variations in formulations, and so forth.

For example, platform technologies can be applied to all IgG1 mAb products, which are similar structurally, but the methods used to purify these products prior to analysis will vary depending on the product formulation. Other glycoprotein products, such as Erythropoietin and FSH, require more in-depth analysis particularly of their glycosylation. This analysis may require further development of methods to be able to characterize the glycans at each of the glycosylation sites within these products.

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here