Scale-up of Human Mesenchymal Stem Cells on Microcarriers in Suspension in a Single-use Bioreactor - The authors demonstrate large-scale stem-cell scale-up using stirred bioreactors. - BioPharm


Scale-up of Human Mesenchymal Stem Cells on Microcarriers in Suspension in a Single-use Bioreactor
The authors demonstrate large-scale stem-cell scale-up using stirred bioreactors.

BioPharm International
Volume 25, Issue 3, pp. 28-38

Figure 6: (A) Cells removed from the microcarriers retained the ability to propagate when seeded onto gelatin coated flasks; (B) Cells removed from the microcarriers had consistent morphology.
To show that the MSCs were still viable after five days of growth on collagen-coated microcarriers in the Mobius CellReady 3L bioreactor, the growth capability of MSCs harvested from the suspension culture was investigated. MSCs were withdrawn from the bioreactor and trypsinized for 5 minutes at 37C to remove the cells from the microcarriers. The suspension was passed through a 100 μm sieve, and the cells were seeded on gelatin-coated tissue cultureware for propagation. The cell number versus time and bright field images of these cells are depicted in Figure 6. Cells retained their ability to propagate for multiple passages and there was no observable lag in growth after the cells were transitioned from the collagen microcarriers back to 2D gelatin-coated flasks. The MSCs show the morphology that is classically indicative of MSCs and this can be observed during various points of this culture in the bright field images. Another signal of healthy stem cells is the capacity of sustained growth after microcarrier culture; this was observed, as expected. Our next studies aimed to use additional genotypic and phenotypic analyses to confirm that these cells were definitively MSCs.

In addition to growth and morphology, MSCs typically express several markers at high levels, while not expressing others. To determine whether the MSCs remain MSCs after the 3-L bioreactor culture, mRNA from the cells was isolated and the expression levels of several genes were probed using RT-PCR. The MSC characterization genes that were investigated were positive markers CD44, CD105, and CD90, and negative marker CD19. The relative expression of these genes was compared with samples of cells derived from the 3-L single-use bioreactor, spinner flasks, static cells grown on 3D microcarriers, and gelatin-coated tissue culture flasks (2D gel). Cells expanded in the 3-L bioreactor showed similar levels of gene expression of the MSC characterization genes when compared with cells grown on gelatin-coated tissue culture flasks.

High RNA levels of the positive markers were observed for all culture conditions, while expression of markers chosen as negative controls was not observed. The housekeeping gene GAPDH was present in similar levels between the samples. Differentiation of the MSCs in the 3-L bioreactor would have caused the gene expression of the characteristic markers to change; that these genes were expressing similar amounts of messenger RNA across the samples indicated that the cells remained undifferentiated.

Figure 7: Mesenchymal stem cell characterization. (A) Similar RNA levels were found from all culture configurations; (B) Similar levels of protein were also observed in mesenchymal stem cells grown in the 3-L single-use bioreactor compared with gelatin-coated culture flasks.
A second method to characterize MSCs is to examine protein expression levels of MSC characterization surface proteins. Cells taken from the 3-L bioreactor and dissociated from the beads were seeded onto gelatin-coated glass slides, along with control MSCs; these cells were then exposed to antibodies specific for these surface proteins. Labeled secondary antibodies (red) were incubated with these samples and then counterstained with nuclei marker DAPI (blue) so that immunofluorescent images could be collected. CD44 and CD90 protein levels of cells taken from the bioreactor were comparable to the levels observed in cells that were grown on gelatin in tissue culture flasks. The expression of negative control markers CD14 and CD19 was not observed. Results from both MSC characterization experiments are shown in Figure 7. In subsequent studies, a broader array of positive and negative surface markers and quantification of positive cells using flow cytometry can be used.

Figure 8: : Lipid vacuoles of apidocytes were stained red after differentiating cells removed from the 3-L bioreactor and cells grown on gelatin following a two-week differentiation.
To show that the MSCs retained their ability to differentiate, a study was performed to coax MSCs towards adipocytes. MSCs removed from microcarriers from the 3-L bioreactor culture and 2D control cultures were compared to evaluate their ability to differentiate. The adipocyte differentiation was conducted over three weeks; cells were fixed and the differentiation was assessed via oil red staining of lipid vacuoles present in adult adipose cells (see Figure 8). Cells from the Mobius CellReady 3L and gelatin control cultures both contained the characteristic vacuoles indicative of adipocytes, indicating that the cells had some of the same differentiation capabilities as the control MSCs. Future experiments will include additional differentiation protocols to study the differentiation of the cells to additional lineages.

Results indicate that MSCs are capable of being expanded in the 3-L bioreactor on collagen-coated microcarriers. Cells grown in the bioreactor showed similar growth rates to control cells that are grown on tissue cultureware. The MSCs produced from these cultures also express similar levels of characteristic stem cell genes as observed in the RNA and protein expression. They also retain the ability to grow for multiple passages and to be differentiated to adipocytes at similar degrees as control MSCs grown in 2D gelatin cultures.

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here