Scale-up of Human Mesenchymal Stem Cells on Microcarriers in Suspension in a Single-use Bioreactor - The authors demonstrate large-scale stem-cell scale-up using stirred bioreactors. - BioPharm


Scale-up of Human Mesenchymal Stem Cells on Microcarriers in Suspension in a Single-use Bioreactor
The authors demonstrate large-scale stem-cell scale-up using stirred bioreactors.

BioPharm International
Volume 25, Issue 3, pp. 28-38

Figure 3: (A) Cell nuclei and (B) cell culture concentration profile after 5, 10, and 20 days of culture in stirred agitation spinner flasks.
Figure 3 shows the cell concentration profile versus time and cell nuclei stained with DAPI after 5, 10, and 20 days of culture in stirred agitation spinner flasks. The cells readily propagated and after 3 days cells were found attached to nearly every microcarrier. This was a very important result because it shows that the MSCs can jump from one microcarrier to another under stirred agitation. Because only around 4% of microcariers that were seeded under static conditions were still in the culture after 10 days, and yet the day 20 image shows more than 4% of the microcarriers populated with cells, the cells must have traversed from a confluent surface to a fresh surface to populate the fresh microcarriers.

After it was shown that MSCs could propagate under stirred agitation, studies relating to the scale-up from the 125-mL spinner flask to the Mobius CellReady 3L bioreactor were undertaken. MSCs on microcarriers that were still in the exponential growth phase were transferred from spinner flasks (200 mL at 100,000 cells/mL) to the single-use Mobius CellReady 3L bioreactor which contained 800 mL of media with fresh microcarriers that were at temperature and agitating at 25 RPM.

Figure 4: (A) Increase in cell number in single-use bioreactor. (B) By the seventh day of culture, greater than 90% of the microcarriers had mesenchymal stem cells growing on them.
On day three, one liter of media with fresh beads was added to the one liter culture and the impeller rate was increased to 40 RPM to keep the microcarriers suspended. The cell concentration profile of cells on microcarriers growing in the Mobius CellReady 3L and images of cell nuclei on microcarriers at various time points are depicted in Figure 4. Cell number increased by 5.2-fold over the five day culture period.

This growth rate is similar to the 48 h doubling time exponential curve for the first five days; the cell concentration then drops off this pace slightly by the seventh day. As shown in the images, after one day of growth in the Mobius CellReady 3L bioreactor there are still fresh beads that have not been populated and microcarriers that are near confluence. The latter are probably beads that were transferred from the spinner flask, but there are also several microcarriers that have nuclei, indicating new growth. The day four image shows many microcarriers with many MSCs, but there are also some naked microcarriers, most likely introduced when the number of microcarriers was diluted 1:1 with new micorcariers with the day three media addition.

In the day seven image, propagation of cells from bead to bead is most evident; a culture that begins with a minority of confluent microcarriers (10%) has MSCs on greater than 90% of the microcarriers a week later. Some small aggregates of microcarriers (2–5 beads) were observed, but because the static 3D petri dish cultures also contained small aggregates which was the model for 3D growth, these small clumps were not discouraged. The cell concentration measured by counting nuclei lysed off the microcarriers and the images of nuclei on the microcarriers give a strong indication that the cell number was increasing and that the cells were propagating to fresh microcarriers. These analyses, however informative, do not supply information regarding the health of the cells, nor do they indicate if these cells have the typical characteristics of MSCs. Accordingly, further characterization studies were performed.

Figure 5: (A) Analysis of glucose and (B) lactate levels from the 3-L single-use bioreactor.
To better understand the health of the cells and to determine if the cells are active, several additional parameters were measured. Daily supernatant samples from the single-use bioreactor were collected and analyzed and the profiles of nutrients and metabolites in the media during the culture were generated (see Figure 5). Glucose levels decreased from 0.79 to 0.48 g/L between day one and three; after the media addition, levels fell again from 0.57 to 0.02 g/L between days four and seven. The average specific glucose consumption rate over the culture was 2.7E-09 g/cell-day. Lactate levels increased steadily from 0.34 to 0.68 g/L between days one and three, and again after the media addition, from 0.51 to 1.0 g/L over the last three days. The average specific generation rate of lactate was 1.9 E-09 g/cell-day during the culture. Because of the decreasing glucose levels, it was decided to perform characterization, viable recovery, and differentiation studies after five days in the Mobius CellReady 3L bioreactor. Cultures longer than five days may require more media additions or perhaps higher levels of glucose in the growth media (low glucose was used for this study) to maintain suitable levels of glucose for exponential cell growth. Showing that the MSCs are consuming glucose and producing lactate over the first five days of the culture indicates that the culture is healthy, but it does not indicate how the cells might perform after being removed from the microcarriers after the 3-L culture.

blog comments powered by Disqus



FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here