Recombinant Albumin Facilitates Formulation Design of Stable Drug Products - Recombinant albumin can stabilize a drug product and assist in the administration and release of the active component. - Bi


Recombinant Albumin Facilitates Formulation Design of Stable Drug Products
Recombinant albumin can stabilize a drug product and assist in the administration and release of the active component.

BioPharm International
Volume 25, Issue 3, pp. 40-44


Aggregation of protein products is a major concern during the manufacturing and delivery of protein therapeutics. This concern is primarily because of the increased potential for aggregates to lead to an immunogenic reaction, and possible problems with drug administration (6). There are various mechanisms by which aggregation of proteins occur, including a formation of polymeric-like structures, misfolded proteins, and covalently linked proteins either in a native or denatured state.

Significant product losses during manufacture and storage from aggregation are also a concern, influencing product recovery and effective dosage forms. Protein aggregation can occur during numerous stages of the manufacturing and storage process, such as refolding, purification, mixing, freeze-thawing, freeze-drying, and reconstitution. Formation of these associated species is generally concentration dependent, which is a particular challenge for protein therapeutics formulated at high concentrations.

Exposure of protein therapeutics to bulk freeze-thaw processes is a stress that protein drug substances can be exposed to during the manufacturing process to enhance operational flexibility while maintaining product stability. In this study, a range of rAlbumin concentrations was evaluated for the ability to suppress amyloid-fibril formation of the malarial vaccine antigen, merozoite surface protein 2 (MSP-2), after a single freeze-thaw cycle. MSP-2 was chosen as the model to investigate aggregation because of its tendency to form amyloid-like fibril aggregates (7, 8).

Briefly, rAlbumin at various concentrations was dissolved in a buffer solution; the MSP-2 protein (3.5 mg/ml) was then added to all samples followed by a single freeze-thaw cycle. Samples were then plated in a 96-well plate and stored at 2–8 C. Amyloid-like fibrils are known to affect light scattering when measured at λ 320 nm. Therefore, absorbance readings were taken at λ 320 nm at multiple time intervals over a five-day period to test for the formation of aggregation products.

Figure 3
Excipients commonly used to improve protein stability were also compared against rAlbumin for their ability to inhibit protein aggregation. rAlbumin (15.0 mg/ml), glycine (20.0 mg/ml), PEG 400 (1.0 mg/ml), polysorbate 80 (0.82 mg/ml), or polysorbate 80 (8.2 mg/ml) were tested in the same model as described above. Absorbance readings were taken at multiple time intervals at λ 320 nm.

Figure 4
Results showed aggregation was suppressed by 50% at a 1:1 molar ratio of the MSP-2 antigen to rAlbumin and at the highest concentration of rAlbumin, aggregation of the MSP-2 protein was reduced by 80% (see Figure 3). These results also demonstrated that rAlbumin suppressed aggregation of the MSP-2 antigen to a greater extent when compared with other commercially available excipients (see Figure 4).

The mechanism by which albumin inhibits aggregation is not well understood. HSA is known to sequester and transport metal ions such as Cu and therefore has the potential to reduce the complexes between Cu and amyloid peptides that are involved in the formation of amyloid-like fibrils (9).

blog comments powered by Disqus



Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
AstraZeneca Reveals Design for New Global R&D Center and Corporate Headquarters
July 18, 2014
AbbVie to Acquire Shire for $54.7 Billion
July 18, 2014
Particulate Matter Prompts Baxter's Recall of IV Solutions
July 17, 2014
Author Guidelines
Source: BioPharm International,
Click here