Efficient Prion Removal from Gonadotropin Solutions by Nanofiltration Membranes - The authors explore whether a nanofiltration process can be effectively leveraged for removal of prions under conditio

ADVERTISEMENT

Efficient Prion Removal from Gonadotropin Solutions by Nanofiltration Membranes
The authors explore whether a nanofiltration process can be effectively leveraged for removal of prions under conditions used for the manufacture of urine-derived gonadotropins.


BioPharm International
Volume 24, Issue 12, pp. 36-49

CONCLUSION

The physiological PrPC is present in significant amounts in various regions of the body as a monomer with a molecular weight and molecular features similar to those of gonadotropins. Therefore, low traces of this protein can be found in the final preparation in some purification processes (9). Even a nanofiltration step, if present into the purification process, cannot efficiently separate gonadotropins from PrPC. But because infectivity of PrPSc is strictly connected to the formation of high molecular weight aggregates of the same protein the differences in the molecular dimensions between PrPSc and gonadotropins are sufficient to predict a high level of performance of the nanofiltration step using Viresolve NFP filters (6, 28). Indeed, in spite of the fact that no evidence exists about the real prion removal mechanism by nanofilters, the aggregation status and the differences in the molecular weight between gonadotropins and PrPSc could in principle explain the high value of log reduction of infectivity observed in this experimental study and the efficiency of this nanofiltration step. Together, these observations demonstrate that the nanofiltration technology can significantly increase the level of prion safety of human-derived biological products.

ACKNOWLEDGMENTS

The authors thank Dr. Adriano Aguzzi, director of the Institute of Neuropathology at the University of Zurich, and his team, Dr. Harald Seeger and Audrey Marcel, also from the Institute of Neuropathology at the University of Zurich for scientific and technical collaboration in the study.

Paolo Caccia is director of the biomanufacturing department and Luca Angiolini is head of the protein engineering laboratory, both at the Institut Biochimique SA, Switzerland. Renato Lorenz* is a senior biomanufacturing engineer at Merck Millipore, Italy, and Estelle Zelter is in field marketing in the Europe Virus Safety Solutions group at Merck Millipore, France. *To whom correspondence should be addressed,


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

EMA Warns of Falsified Herceptin Vials
April 16, 2014
Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
PhRMA Report Reveals Growth Trajectories and Policy Factors Affecting Biopharmaceutical Growth
April 11, 2014
Author Guidelines
Source: BioPharm International,
Click here