An Environmental Life Cycle Assessment Comparing Single-Use and Conventional Process Technology - The authors compare the environmental impact of monoclonal antibody production using fixed-in-place pr

ADVERTISEMENT

An Environmental Life Cycle Assessment Comparing Single-Use and Conventional Process Technology
The authors compare the environmental impact of monoclonal antibody production using fixed-in-place processing and single-use systems.


BioPharm International Supplements
pp. s30-s38

RESULTS AND DISCUSSION


Figure 2: Cumulative energy demand (CED) and global warming potential (GWP) for the production of a monoclonal antibody in a full process train at 2000-L scale with assumed mAb titre of 6 g/L. Impacts grouped by life cycle stage (supply chain, use phase, and end-of-life).
Figure 2 shows the cumulative energy demand (CED) and global warming potential (GWP) for single-use versus traditional durable process technology for the full process train with a 2000-L working volume. The results are categorized by life-cycle stage. The supply chain phase includes materials and manufacturing of all process equipment and consumables required to support a 10-batch mAb production campaign. The use phase includes all impacts that occur during mAb production, including cleaning and sterilization of traditional durable equipment between batches. The end-of-life phase includes the disposal of consumables and the disposal, re-use, or recycling of allocated portions of durable components.


Figure 3: Cumulative energy demand (CED) and global warming potential (GWP) for the production of a monoclonal antibody in a full process train at 2000-L scale with assumed mAb titre of 6 g/L. Impacts displayed by unit operation.
A substantial majority of the life cycle environmental impacts occur during the use phase. Note that the comparative CED and GWP results are very similar because almost all of the GWP is related to energy production and consumption. The single-use process train exhibits 38% lower GWP during use phase (and 34% lower GWP across all life-cycle stages) compared to a traditional durable process train. The corresponding reduction in CED is 38% during use phase and 32% across all life-cycle stages. Supply chain GWP and CED impacts are slightly higher for single-use compared with traditional process technology due to the increased manufacturing required to provide the consumable components used in a single-use approach. However, supply-chain impacts represent <11% of the life-cycle CED impact and <5% of the life GWP impact. Environmental impacts from the end-of-life stage represent <1% of overall life cycle impacts.


Figure 4: Water usage for the production of a monoclonal antibody in a full process train at 2000-L scale with assumed mAb titre of 6 g/L. Impacts grouped by life cycle stage (supply chain, use phase, and end-of-life).
Figure 3 shows the CED and GWP impacts for single-use vs. traditional process technology categorized by unit operation. The most substantial impacts (38–40% of both GWP and CED) are related to the support CIP/SIP system, which includes the CIP/SIP infrastructure and common support activities such as process water and HVAC requirements (the main difference between process approaches in this category is the amount of energy required to generate WFI and steam). The use of single-use process technology exhibits lower CED and GWP impacts compared to traditional durable technology in all unit operations except Protein A and ion-exchange chromatography, which are higher for single-use since several single-use columns must be used in parallel to reach this scale.


Figure 5: Water usage for the production of a monoclonal antibody in a full process train at 2000-L scale with assumed mAb titre of 6 g/L. Impacts displayed by unit operation.
Figure 4 shows water usage categorized by life cycle stage. Substantial water savings are realized during the use phase for single-use process technology due to the reduction or elimination of cleaning and sterilization between batches. Figure 5 shows water usage categorized by unit operation. As expected, water usage is dominated by activities related to the support CIP/SIP system. Single-use process technology exhibits lower water usage in all unit operations except Protein A and ion exchange chromatography, again due to the need for parallel chromatography columns at this scale. Note also that the majority of water usage in the UP 03 Bioreactor is for media, so the primary water usage savings of single-use process technology is due to the shift from steam heating to electrical heating. The negative water usage during the end-of-life stage reflects credit related to the re-use and recycling of durable components.

The results in Figures 2–5 focus on the 2000-L working volume scale. Similar results were obtained at 100-L and 500-L scales, and the process technology comparisons discussed in this section apply to all three scales.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA and NIH Win Award for IP Licensing of Meningitis Vaccine
September 26, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
FDA Releases REMS Report
September 25, 2014
NIH Funds Tissue Chip for Drug Screening
September 25, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here