An Environmental Life Cycle Assessment Comparing Single-Use and Conventional Process Technology - The authors compare the environmental impact of monoclonal antibody production using fixed-in-place pr

ADVERTISEMENT

An Environmental Life Cycle Assessment Comparing Single-Use and Conventional Process Technology
The authors compare the environmental impact of monoclonal antibody production using fixed-in-place processing and single-use systems.


BioPharm International Supplements
pp. s30-s38

METHODOLOGY

Goal definition

The goal of this study was to compare the potential environmental impacts associated with the production of mAbs using either single-use or traditional durable process technologies. The full process trains were evaluated at 100-L, 500-L, and 2000-L scales. Calculations were based on a 10-batch campaign assuming 6 g/L titres. The study did not account for any potential difference in product yield resulting from choice of process technology. Any such issues are product- or process-specific and beyond the scope of this study.

The results of this LCA will be used to communicate potential environmental impacts to interested stakeholders and to identify key areas for potential improvement in terms of supply chain, product design, manufacturing, or end-of-life as appropriate.

Scope


Figure 1: Process diagram of full process train for the production of monoclonal antibodies (mAbs). For this study, the process train was categorized into 14 unit operations and a 15th category, "Support CIP/SIP System," that included the clean-in-place/steam-in-place infrastructure and common support activities, such as process water and HVAC requirements. IEX is ion-exchange chromatography, UF/DF is ultrafiltration/diafiltration.
The scope of this study included both upstream and downstream processes involved in the production of mAbs. Figure 1 shows a process schematic of the full process train categorized into fourteen unit operations. A 15th category included the clean-in-place/steam-in-place (CIP/SIP) infrastructure and common support activities, such as process water and HVAC requirements (collectively termed "Support CIP/SIP System").

The potential for a smaller production facility enabled by the choice of single-use technology was not specifically included in the scope of this study. However, the floor space used per HVAC class for each technology was scaled to the required facility footprint. This approach assumed that a traditional technology facility is in place and single-use technology is adapted to the existing facility.

A variety of single-use technology from different manufacturers is available. This study systematically used GE technology (i.e., WAVE Bioreactor system and ReadyToProcess components) wherever appropriate due to the greater availability of internal data, and to support an effort to identify opportunities for environmentally conscious product design.

This study did not address any potential differences in labor requirements.

Life-cycle inventory analysis

The main body of data used in this study was derived in collaboration with BioPharm Services and can be considered industry average based on a combination of primary and secondary sources. Data on production of single-use components were obtained primarily from GE Healthcare. Data on transportation, packaging, and end-of-life were gathered through a combination of supplier data (GE Healthcare) and expert interviews. Additional secondary data were obtained from the ecoinvent 2.2 life-cycle inventory database (11).

The life-cycle assessment models were developed in SimaPro Analyst version 7.2.4 life-cycle assessment software (12). The inventory data were analyzed using several impact assessment methodologies. Cumulative energy demand (CED) was calculated using the Cumulative Energy Demand v1.07 method and includes the total life cycle energy requirements including production and distribution of energy that is consumed across the life cycle, reported in units of megajoule-equivalents (MJ-eq). Lifecycle global warming potential (GWP) was calculated using the IPCC 2007 100a method and is reported as CO2-equivalents (CO2-eq), including all greenhouse gases specified in the Kyoto Protocol using 100-year time horizon global warming potentials from the Intergovernmental Panel on Climate Change 4th Assessment Report (13). Water usage (withdrawal) is reported in kilograms (kg) and was calculated using a custom impact assessment method that evaluates the withdrawal of freshwater (and saltwater, if any) across the lifecycle of the system being studied.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

AbbVie/Shire Deal Officially Off
October 20, 2014
Amgen Sues Sanofi and Regeneron over Patent for mAb Targeting PCSK9
October 20, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Lilly to Close Manufacturing Facility in Puerto Rico
October 17, 2014
BioReliance Introduces New Predictive Assays
October 17, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here