Perspectives in MicroRNA Therapeutics - The authors provide insight into microRNA biology, and the simplicity of anti-miR oligonucleotide drug delivery, which can restore balance and function to dysre

ADVERTISEMENT

Perspectives in MicroRNA Therapeutics
The authors provide insight into microRNA biology, and the simplicity of anti-miR oligonucleotide drug delivery, which can restore balance and function to dysregulated microRNA pathways of gene expression.


BioPharm International
Volume 24, Issue 10, pp. 49-53

ANTI-MIR OLIGONUCLEOTIDE DRUG DELIVERY

Up until nearly a decade ago, insufficient in vivo stability, limited methods of delivery and tissue distribution of oligonucleotides hampered successful clinical development for several promising oligonucleotide therapeutic agents. As high molecular weight, highly charged polyanionic molecules, oligonucleotides faced many hurdles in reaching their target organ or target cell type. First-generation antisense phosphorothiolated oligodeoxynucleotide clinical candidates administered into the bloodstream had a low affinity for their target, poor stability because of nuclease degradation, unfavorable immunostimulatory properties, and rapid excretion by renal clearance, resulting in shortened half-lives (11). To increase their metabolic stability and tissue half-life, antisense and anti-miR oligonucleotides from second-generation nucleoside chemistries were developed that dramatically altered the pharmacokinetic properties of these molecules (10, 12).


Figure 4: Similar pattern of tissue distribution for chemically modified anti-miRs in mouse and monkey. Anti-miR oligonucleotide quantitation was performed on tissues by either mass spectrometry analysis or capillary gel electrophoresis. IP is Intraperitoneal, SC is subcutaneous.
The introduction of chemical modifications such as 2' methoxyethyl (MOE) and 2', 4'-constrained 2'O-ethyl (cEt) into the ribose sugar ring significantly improved both the pharmacokinetic and safety profile of antisense oligonucleotides. Once delivered systemically, these second-generation compounds rapidly partition from the plasma and are taken up by cells of multiple tissues without the need of formulation or a delivery vehicle. Benefitting from nearly 20 years of oligonucleotide chemistry advances at companies such as Isis Pharmaceuticals, leading developers of anti-miR therapies have garnered a tremendous advantage in improved delivery strategies. The high water solubility of anti-miR oligonucleotides due to their polyanionic chemical structure has allowed anti-miR formulation in simple aqueous solutions such as buffered saline (13). The only limiting factor is the viscosity of the solution, which is generally concentration-dependent for single-stranded oligonucleotides (13). This simple anti-miR formulation is in contrast to the requirements for double-stranded siRNA drug delivery, which must fully encapsulate the siRNA in a lipid nanoparticle to systemically deliver its contents to a target tissue (14).

ANTI-MIR ROUTE OF ADMINISTRATION AND TISSUE DISTRIBUTION


Figure 5: The distributions of anti-miRs in mice and monkey are highly correlated. Quantitative analysis of drug concentration by mass spectrometry revealed a good correlation of drug tissue distribution across multiple species.
Bioavailability and tissue distribution of anti-miRs have been studied extensively in rodents and nonhuman primates. The preferred route of administration for most therapeutic anti-miR compounds is subcutaneous systemic delivery, because it provides efficient dissemination of the drug to different tissues including the liver, kidney, and adipose tissue without the need of a drug delivery system. Additionally, the biodistribution of anti-miRs in multiple animal species following subcutaneous administration provides valuable information regarding organs that may be successfully treated, as well as those organs unlikely to be affected. Multiple studies were performed in mice and monkeys with second generation anti-miR 1 and anti-miR 2 compounds given subcutaneously once weekly over several weeks. A quantitative analysis of tissues demonstrated broad biodistribution of modified anti-miRs among multiple tissue types including the kidney, liver, lymph nodes, adipose tissue, and spleen, as demonstrated by mass spectrometry analysis (see Figure 4). These organs have been previously shown to be target sites for oligonucleotide distribution after parenteral administration (13). Additionally, the similar pharmacokinetics and correlated tissue distribution of each anti-miR in different preclinical animal models provide important guidance for selection of different disease indications and may assist in better clinical trial designs with anti-miR therapies (see Figure 5). Effective delivery of anti-miR oligonucleotides has also been demonstrated in different species through multiple routes of administration including: intravenous, intraperitoneal, intratracheal, intranasal, and intracerebral. A more detailed analysis of anti-miR tissue distribution using quantitative whole body autoradiography to provide additional quantitative information is in progress.



blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

GPhA Supports Restricted Access Bill
September 18, 2014
Baxter Initiates Voluntary Recall of Potassium Chloride Injection
September 17, 2014
European Commission Approves RoACTEMRA for Treatment of RA
September 9, 2014
PDA Announces Technical Report on Drug Shortages
September 9, 2014
Infinity and AbbVie Collaborate to Develop Oncology Drug
September 5, 2014
Author Guidelines
Source: BioPharm International,
Click here