A Case Study for the Inactivation of TSE Agents: Using an Alkaline Treatment in the Manufacturing Process of a Cell Culture Media Supplement - - BioPharm International


A Case Study for the Inactivation of TSE Agents: Using an Alkaline Treatment in the Manufacturing Process of a Cell Culture Media Supplement

BioPharm International

Sponsors of therapeutic biologicals must demonstrate they are not introducing disease-causing agents into patients. There is a perceived risk - among the public and some regulators - of spongiform encephalopathy transmission in biotechnological products using bovine-derived cell culture components. Although there have been no incidents of transmission to humans of spongiform encephalopathies, particularly bovine spongiform encephalopathy (BSE), precautions must be taken. By employing animal-sourced materials from younger animals, which have never shown effects of the disease; using a robust process to produce cell culture supplements; and purifying the therapeutic products, the perceived risk is reduced.

However, when compared with other adventitious agents, prions - which cause transmissible spongiform encephalopathies (TSEs) - are a greater concern because they are so difficult to inactivate, and there is currently no rapid, reliable technique to detect their presence. In this article, we present information about prion diseases, critical elements of TSE agent clearance studies, and a case study for inactivation of TSE by use of alkaline conditions during the manufacturing process of a cell culture media supplement.

Table 1. Scrapie agent load over alkaline treatment time course.
Prion Diseases TSEs are neurological diseases caused by a proteinaceous agent called a prion. These diseases include Creutzfeldt–Jakob disease (CJD) in humans and scrapie in sheep. The disease-causing protein is thought to be the result of alternate folding of a protein containing the same amino acid sequence found in the circulation of uninfected individuals. How the normal protein is converted to the infective form is the subject of much speculation and experimentation. One particular TSE - BSE, or "mad cow disease" - is of particular concern for producers of biological products.

Previously, TSEs were thought to be species-specific. That is, the disease in one organism could not be transmitted to another. However, events in the United Kingdom and Europe have indicated that a disease called variant CJD (vCJD) is quite likely derived from BSE (1). The route of transmission is thought to be the ingestion of neural tissue from a diseased animal. The BSE agent has now been shown to be transmissible to sheep by direct intravenous injection (2).

These findings indicate that concern about the use of bovine materials in the production of biopharmaceuticals is valid. However, according to European, World Health Organization (WHO), and U.S. Department of Agriculture (USDA) regulations, serum and plasma derived from veterinary-screened animals in non-BSE countries are considered low-risk materials (3–5). A risk assessment for vaccines produced using bovine-derived material is provided by FDA on its website (6).

As stated in the Note for Guidance on Minimising the Risk of Transmitting Animal Spongiform Encephalopathies via Human and Veterinary Medicinal Products from the Center for Proprietary Medicinal Products (CPMP) (5), the risk of TSE contamination can be reduced by addressing

  • the source animals and their geographical origin
  • the nature of the animal material used in manufacture, and any procedures in place to avoid cross-contamination with higher-risk materials
  • the production processes and the quality assurance system in place to ensure product consistency and traceability.

Unfortunately, BSE is appearing in areas of the world once thought to be free of this prion agent, and we clearly do not know where it will be found in the future. The CPMP Note for Guidance states: "Manufacturers should continue their investigations into removal and inactivation methods to identify steps/processes, which would have benefit in assuring the removal or inactivation of TSE agents" (5).

Figure 1. Photomicrographs of brain tissue of golden Syrian hamster; (a) control injected intracerebrally with saline; (b) scrapie lesions are seen in a brain infected intracerebrally with the hamster-adapted 263K scrapie strain.
Prion Clearance Studies Similar to viral clearance studies, the objective of TSE clearance studies is to assess manufacturing process steps that might be considered effective in inactivating or removing TSE agents and making quantitative evaluations of the level of reduction. TSE clearance studies are designed like conventional viral clearance studies (7). The nature of the spiking material and the endpoint assay, however, are unique to TSE clearance studies.

Hamster strain 263K. With relatively short incubation periods of less than 12 months and the highest titer of any of the TSE rodent adapted strains, the hamster 263K strain is often chosen as a model for TSEs in validation studies. This strain is well characterized and the incubation period and brain histopathology are well documented (Figure 1). A recent study supports the validity of hamster scrapie as a model for other TSE agents (8). The method of preparing the spiking material is an important consideration in the design of a clearance study. The use of a crude brain homogenate, as the spiking material in an inactivation step, provides the greatest challenge, whereas a less viscous preparation has been found superior for some removal steps (9).

The resistance of the hamster-adapted 263K strain to inactivation is similar to that of other TSE agents, and methods that have been shown to successfully inactivate prions have been reported (10). Sodium hydroxide has been reported to be an effective inactivating agent for TSEs, and it is widely used in biotechnology to sanitize processing equipment (5,11).

Inactivation of Prion Agent We used EX-CYTE growth enhancement media supplement (Serologicals Corporation) as our case study for inactivating a prion agent. This medium is a water-soluble mixture of lipoproteins derived directly from bovine serum or plasma. It is used as a supplement to reduce the use of fetal bovine serum in cell culture media and as a component in serum-free cell culture media to promote the growth of mammalian cells and the production of genetically engineered proteins. Our case study involves the validation of the alkaline inactivation step for EX-CYTE.

blog comments powered by Disqus



AbbVie/Shire Deal Officially Off
October 20, 2014
Amgen Sues Sanofi and Regeneron over Patent for mAb Targeting PCSK9
October 20, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Lilly to Close Manufacturing Facility in Puerto Rico
October 17, 2014
BioReliance Introduces New Predictive Assays
October 17, 2014
Author Guidelines

Click here