Structural Characterization of Monoclonal Antibodies - The author describes techniques that can be used to provide the analytical data required by ICH Q6B for characterization of monoclonal

ADVERTISEMENT

Structural Characterization of Monoclonal Antibodies
The author describes techniques that can be used to provide the analytical data required by ICH Q6B for characterization of monoclonal antibodies.


BioPharm International Supplements
Volume 24, Issue 8, pp. s15-s22

CARBOHYDRATE STRUCTURE

As mAbs are glycoproteins, it is also necessary to characterize the glycan portion of each product. Typically, mAbs have one N-linked glycan consensus sequence (asparagine–Xxx–serine or threonine, where Xxx can be any amino acid except proline) within each heavy chain located in the constant fragment (Fc) region. The light chain component of a mAb is not normally glycosylated. Since additional N-linked glycan consensus sequences may be present within the heavy chains, the presence or absence of glycosylation should be confirmed. ICH Q6B requests that "For glycoproteins, the carbohydrate content (neutral sugars, amino sugars and sialic acids) is determined. In addition, the structure of the carbohydrate chains, the oligosaccharide pattern (antennary profile) and the glycosylation site(s) of the polypeptide chain is analyzed, to the extent possible."


Figure 1: Schematic of the normal approaches employed to analyze the glycosylation of a monoclonal antibody (mAb). LC is liquid chromatography, MS is mass spectroscopy.
As shown in Figure 1, monosaccharide composition analysis is usually carried out to determine the carbohydrate content of a mAb. Liquid chromatography and gas chromatrography (often with mass spectrometric detection) are commonly used to define the carbohydrate content of a mAb. The method(s) used should allow identification and quantitation of the levels of the neutral sugars (fucose, mannose and galactose), amino sugars (N-acetylglucosamine, N-acetylgalactosamine) and sialic acids (N-acetylneuraminic acid and N-glycolylneuraminic acid) within the product.

Following monosaccharide composition analysis, the next stage of analysis moves into characterization of the oligosaccharides normally present on each heavy chain. An example of the methodology used for releasing, purifying and analyzing the N-linked glycans from a mAb is shown in Figure 1.

Reduction/alkylation and the specific protease digestion are intended to denature the mAb so that the relatively large enzyme PNGase F can do an efficient job at removing the N-linked glycans. Once the N-glycans are released, a simple reverse phase cartridge can be used to separate the hydrophilic glycans from the more hydrophobic peptides. The N-linked glycan fraction can then be analyzed using mass spectrometry and/or liquid chromatography-based techniques.


Figure 2: Raw data obtained from matrix-assisted laser desorption ionisation time-of-flight (Maldi-TOF) mass spectrometric analysis of the N-glycans released from a mAb. The N-glycans were permethylated prior to analysis.
The matrix-assisted laser desorption ionisation time-of-flight (MALDI–TOF) mass spectrum obtained from analysis of the N-glycans released from a mAb (using the methodology shown in Figure 1) is shown in Figure 2. The major signals observed are consistent with the commonly encountered mAb glycans G0F, G1F and G2F (see Figure 2).


Figure 3: Raw data obtained from high-pH anion-exchange chromatography with pulsed amperometric detection analysis (HPAEC–PAD) of the N-glycans released from a mAb.
The high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC–PAD) trace obtained from analysis of the N-glycans released from the same mAb product is shown in Figure 3.

Both sets of data can be used to provide a relative quantitation of the N-linked oligosaccharides observed and suggest the structures of the N-linked glycans present. Glycosylation is the most common post-translational modification encountered by the regulatory authorities. The regulators are aware that glycosylation can be significantly affected by even simple changes in the manufacturing processes, such as a pH change or a change of growth media. The monosaccharide composition analysis data (in terms of levels of mannosylation, galactosylation and sialic acid) and N-linked oligosaccharide profiling data obtained from the analysis of various batches of a mAb product are therefore used by the regulator as part of the assessment of whether a manufacturer has control of the manufacturing process of a mAb. Comparability of N-glycan profiles from batch to batch suggests that the manufacturing process is under control.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
AstraZeneca Reveals Design for New Global R&D Center and Corporate Headquarters
July 18, 2014
AbbVie to Acquire Shire for $54.7 Billion
July 18, 2014
Particulate Matter Prompts Baxter's Recall of IV Solutions
July 17, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here