Fermentation Process Technology Transfer for Production of a Recombinant Vaccine Component - The authors describe challenges faced in transfer and scale-up of a fermentation process. - BioPharm


Fermentation Process Technology Transfer for Production of a Recombinant Vaccine Component
The authors describe challenges faced in transfer and scale-up of a fermentation process.

BioPharm International
Volume 24, Issue 7, pp. 30-39


An approach combining process and equipment characterization was used to transfer a high titer, fed-batch E. coli fermentation process for the production of Q-beta VLP rapidly and successfully from a collaborator to Pfizer's cGMP pilot plant. The early assembly of an appropriately staffed and sized technology transfer team that enabled efficient communication with the collaborator was key to the success of this endeavor. Based on a review of the fermentation process, high oxygen demand during the fed-batch phase was identified as an important issue, especially if the fermentation was to be reproduced without oxygen supplementation. The original fermentation process was rapidly transferred to a 15-L laboratory-scale fermentation system, while simultaneously collecting process characterization data. Subsequently, equipment characterization of the cGMP pilot plant and laboratory fermentation systems was undertaken. Based on these results, the original fermentation feeding strategy was modified to decrease the duration of the pre-induction feed phase and lower peak oxygen demand. The resulting fermentation process took advantage of the maximum oxygen transfer rate achievable in the pilot-scale fermenter, and successfully produced Q-beta VLP at a sufficiently high titer without the need for oxygen enrichment of the process air stream.


We would like to thank Cytos Biotechnology, Pfizer Vaccines Research Unit, Pfizer Bioprocess R&D Manufacturing and Analytical R&D Group, Michael Dupuis, Aparna Deora, John Amery, David Steinmeyer and Tom Warren.

Shamik Sharma* is a principal scientist, Allison Whalley is a scientist, Joseph McLaughlin is an associate research fellow, Frank Brello is a senior scientist, Bruce Bishop is a an associate research fellow, and Amit Banerjee is a research fellow, all in the department of Biotherapeutics Pharmaceutical Sciences, Worldwide R&D at Pfizer Inc, Chesterfield MO and Andover MA. *To whom corresepondance should be addressed:


Article submitted: Nov. 18, 2010.
Article accepted: Apr. 22, 2011.


1. G.T. Jennings and M.F. Bachmann, Biol. Chem. 389 (5), 521–536 (2008).

2. G. Spohn and M.F. Bachmann, Expert Rev. Vaccines 7 (1), 43–54 (2008).

3. M.F. Bachmann and G.T. Jennings, "Virus-like Particles: Combining Innate and Adaptive Immunity for Effective Vaccination." in Novel Vaccination Strategies, S.H.E. Kaufmann, Ed. (Weinheim: Wiley VCH Verlag GmbH & Co. KGaA, 2004) pp. 415–432.

4. C. Ludwig and R. Wagner, Curr. Opin. Biotechnol. 18 (6), 537–545 (2007).

5. R. Golmohammadi et al., Structure 4 (5), 543–554 (1996).

6. M. Emmerling et al., Cytos Biotechnology A.G., Switzerland, "Scalable fermentation process for expression of recombinant bacteriophage capsid protein in a bacterial host," WO patent 2006/125821 A2. 20060524, 2006.

7. S.Y. Lee, Trends Biotechnol. 14, 98–105 (1996).

8. D.J. Korz, et al., Deckwer. J. Biotechnol. 39 (1), 59–65 (1995).

9. M.L. Shuler and F. Kargi, Bioprocess Engineering —Basic Concepts (Prentice Hall P T R, New Jersey, 1st ed., 1992).

10. F.R. Schmidt, Appl. Microbiol. Biotechnol. 68, 425–435 (2005).

11. M. Hoare et al., Biotechnol. Prog. 21 (6), 1577–1592 (2005).

12. B.H. Junker, J. Biosci. Bioeng. 97 (6), 347–364 (2004).

13. F. Garcia-Ochoa and E. Gomez, Biotechnol. Adv. 27 (2), 153–176 (2009).

14. M. Berge et al., BioPharm Int. 21 (4), 48–52 (2008).

15. G.T. Benz, Chem. Eng. Progr. 104 (2), 32–34 (2008).

16. G.J.E. Baart et al., Vaccine 25 (34), 6399–6408 (2007).

17. B.H. Junker et al., Bioprocess Biosyst. Eng. 19 (6), 403–413 (1998).

18. B.H. Junker et al., Bioprocess Biosyst. Eng. 18 (6), 401–412 (1998).

19. B.W. Rainer, Chem Biochem Eng. 4 (4), 185–196 (1990).

20. V. Linek, J. Sinkule, and P. Benes, Biotechnol. Bioeng. 38 (4), 323–30 (1991).

21. C. Marvin and J. Wilson, "Fermentor Design," in Bioprocess Engineering: Systems, Equipment and Facilities, B.K. Lydersen, N. D'Elia, and K.L. Nelson, Eds. (John Wiley & Sons Hoboken NJ, 1st ed., 1996) pp. 3–67.

blog comments powered by Disqus



FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here