PDA's New Technical Report for Biotech Cleaning Validation - The authors encourage biotech manufacturers to consult PDA Technical Report No. 49 for a detailed perspective on current practices and issu


PDA's New Technical Report for Biotech Cleaning Validation
The authors encourage biotech manufacturers to consult PDA Technical Report No. 49 for a detailed perspective on current practices and issues in biotech cleaning validation.

BioPharm International
Volume 24, Issue 3, pp. 26-34


Table 2
Consistent with a life-cycle approach, a cleaning validation program should include the design of the cleaning process before its implementation in a manufacturing facility. A key to cleaning-process design is an understanding of the cleaning process itself, including critical quality attributes (CQAs) related to the outcome of the cleaning process, as well as critical process parameters (CPPs) of the cleaning process itself. The Technical Report discusses in detail the understanding of the various steps in a cleaning process. Table II illustrates considerations relating to CQAs and CPPs for cleaning processes. Table III illustrates considerations relating to cleaning-process design.

Table 3
The four principal cleaning-input parameters for each step are sometimes referred to as time, action, concentration, and temperature (TACT). These four parameters can vary, but in a controlled cleaning process they are typically fixed. The exception is when principles of process analytical technology are used for process control. These parameters are also interrelated. For example, a cleaning process may be effective at a high temperature for a short time, and may be equally effective at a low temperature and a long time. The effect of these parameters on soil removal should be determined, with acceptable ranges established as part of the design and development effort. As the cleaning process is designed and developed, other issues, such as the appropriate residue-acceptance criteria and how to sample and analyze residue, should be considered.

In addition, as part of the design and development effort, personnel should consider the various materials of construction used in biotech manufacturing. Laboratory evaluations of cleaning-solution compatibility (e.g., concentration, time, and temperature) and surfaces can be performed under simulated cleaning conditions. Differences between the cleaning of soils on those same surfaces also can be evaluated in the laboratory under simulated cleaning conditions.

These experiments enable employees to make determinations related to cleanability, such as comparing the equipment's materials of construction, comparing various soils for a given surface, and comparing various cleaning conditions (e.g., concentration of the cleaning agent, time, and temperature). Worst-case conditions (e.g., cleaning conditions less stringent than what is expected in the manufacturing equipment) may be employed in these laboratory evaluations. The outcome of these studies can be analyzed to create the design space for cleaning. The performance of the cleaning process in the laboratory is then verified by conducting experiments in the pilot-plant or scale-up equipment. Adjustments to cleaning conditions may be made during the scale-up process based on plant experience and laboratory development studies.

blog comments powered by Disqus



FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here