Managing Raw Materials in the QbD Paradigm, Part 1: Understanding Risks - An initial assessment of materials must extend beyond the material specification to include the supplier's manufacturing proce

ADVERTISEMENT

Managing Raw Materials in the QbD Paradigm, Part 1: Understanding Risks
An initial assessment of materials must extend beyond the material specification to include the supplier's manufacturing process, quality systems, and sourcing strategy.


BioPharm International
Volume 23, Issue 11, pp. 34-40

ADVANCES IN RAW MATERIAL CHARACTERIZATION

With the large number of raw materials that are used in typical biotech processes, characterization of raw materials requires use of advanced analytical tools in combination with chemometrics. In this section we review some of the approaches that have been proposed in the literature:

1. Proteomic analysis has been proposed as a tool for assessing complex raw materials such as the fetal bovine serum.9 Proteomic techniques were used to understand the lot-to-lot variability with respect to impact on growth properties of the cell culture process. A time course study was performed to monitor specific changes in the fermentation medium.

2. An approach for routine testing of packed raw materials used in pharmaceutical processes has been recently proposed.10 The chemometrics-based approach consists of three steps. First, the initial calibration objects are divided into two classes using a global principal components analysis (PCA) model. Next, two separate PCA models are constructed. Finally, soft independent modeling by class analogy (SIMCA) is applied for calculating acceptance area. The approach was successfully used to analyze fourier transform-near infrared (FT-NIR) spectra of taurine samples.

3. In a recent publication, a combined approach of near-infrared (NIR) spectroscopy and chemometrics for screening of lots of basal medium powders based on their impact on process performance and product attributes has been proposed.11 A combined NIR and chemometrics approach was able to finger print the raw materials to distinguish between good and poor performing media lots.

4. A recent book chapter described a number of upcoming analytical techniques, including high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), inductively coupled plasma- mass spectrometry (ICP-MS), and liquid chromatography–mass spectrometry (LC-MS) and described experience managing these methods and results as part of a retrospective investigation.12 A case study also was presented using NMR as an analytical tool and PCA for analyzing data for characterizing raw materials for a cell culture step.

With the above mentioned advances in characterization of raw materials, it is possible to fingerprint critical raw materials and ensure that only those lots that have acceptable quality are used.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Novartis Reports Positive Results for Secukinumab in Ankylosing Spondylitis Trials
October 23, 2014
Pall ForteBio Releases Bioprocessing Contamination Detection Kit
October 22, 2014
Roche to Expand and Improve its Basel Site
October 22, 2014
FDA Panel Unanimously Backs Secukinumab for the Treatment of Psoriasis
October 22, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Author Guidelines
Source: BioPharm International,
Click here