Evaluation of a Single-Use Bioreactor for the Fed-Batch Production of a Monoclonal Antibody - Despite different material, agitation, and aeration, the performance of the disposable bioreactor is simil

ADVERTISEMENT

Evaluation of a Single-Use Bioreactor for the Fed-Batch Production of a Monoclonal Antibody
Despite different material, agitation, and aeration, the performance of the disposable bioreactor is similar to that of stainless steel bioreactors.


BioPharm International Supplements


Discussion and Conclusion

The aim of this study was to asses a disposable bioreactor in combination with a disposable probe for a fed-batch MAb production process. The equipment chosen was the HyClone SUB coupled to the TruLogic RDPD controller and the disposable TruFluor DO probe by Finesse Solutions. The single-use DO sensor showed comparable results to conventional ones. The equipment was readily implemented because the set-up time was only one day.

The SUB gave results comparable to the 5-L glass vessel bioreactor (small-scale reference for the process) for the seed train and the production steps. This shows that despite different material, agitation, and aeration, the disposable bioreactor had a performance similar to standard bioreactors, at least for the fed-batch process tested here. The scale-up to 50-L also was straightforward. Given that all HyClone disposable bioreactors have the same overall reactor geometry ratio up to 2,000 L, it can be expected that the scale-up to larger volumes such as 300 L could be performed using the same principles. The scale-up to a higher volume such as 1,000 L could be more complex because process scale-up is rarely linear between such different scales.

The single-use bioreactor showed the capacity to be used either as a seed train bioreactor or a production bioreactor, or both. If this double use is to be implemented, the bag aeration configuration should be carefully defined to be able to cope with different oxygen demand in cell expansion and production. In this case, the same bag was used for both phases, a limitation in oxygen flow rate appeared toward the end of the culture.

The bioprocess container bag used for these experiments was equipped with a 20-mm sparger membrane. The bubbles released by this system were small enough to have sufficient oxygen transfer to the culture, but big enough to strip CO2. The bag is now available with a dual sparge system, consisting in a 20-mm porous frit for the oxygen transfer and an open pipe for CO2 stripping, enlarging the range for pCO2 stripping. Many different disposable bioreactors systems coexist on the market and new versions are frequently released, showing the high dynamism of single-use technology. Each system presents its own features and advantages. Some other disposable bioreactors currently are being assessed in our company.5

This study enabled us to demonstrate the applicability of using a single-use bioreactor for producing a MAb at 50-L scale, and we can expect that further scale-up to at least 300-L can be achieved. In the future, it can be expected that disposable bioreactors will become far more common in biopharmaceutical manufacturing. Their use is of specific interest when producing material for early clinical trials to avoid a capital investment early, when the final production bioreactor volume, as well as the future of the molecule, are unknown. Some people claim that the use of disposable bioreactors also has big advantages when building a new facility, because the need for utilities might be reduced in a fully disposable environment, therefore reducing start up time, installation costs, and campaign turnaround.6 On the other hand, some concerns exist about the environmental impact of disposables, although assessing the latter is far from simple. The reduced use of purified water, clean and pure steam, and cleaning chemicals compared to stainless equipment has to be balanced with the increased plastic waste. One way to reduce the impact of such waste could be to convert back part of the 32.6 GJ/ton of energy stored in plastic in waste-to-energy incineration facilities, not necessarily solving the issue of carbon footprint.7 The ultimate solution might reside in recycling these disposable products, requiring further development on innovative transformation methods. Some other interesting future directions with respect to single-use bioreactors could be the development of systems for perfusion process applications, as well as more insights on leachables and extractables.

Emmanuelle Cameau is a biotech process sciences upstream specialist, Georges De Abreu is a biotech central services manager, Alain Desgeorges, PhD, is a biotech process sciences upstream coordinator, Elodie Charbaut Taland, PhD, is a biotech process sciences manager, and Henri Kornmann, PhD, is a biotechnology production director, all at Merck Serono SA, Aubonne, Switzerland, +41(0)218217111, emmanuelle.

References

1. Brecht R. Disposable Bioreactors: Maturation into pharmaceutical glycoprotein manufacturing. In: Eibl R, Eibl D, editors. Disposable Bioreactors. Springer: Advances in Biochemical Engineering/Biotechnology; 2009. p. 1–31.

2. Selker M, Paldus B. Single-use sensors for Upstream applications. Next Gen Pharm. 2009; 16. Available from: http:// http://www.ngpharma.com/article/Single-use-Sensors-for-Upstream-Applications/.

3. Smolke C, editor. The metabolic pathway engineering handbook. Boca Raton, FL: CRC Press; 2009.

4. Parmeggiani L. Encyclopaedia of occupational health and safety: A-K. Switzerland: International Labour Office; 1983.

5. Poles A, et al. Comparison of fed batch cell culture performances between stainless steel and disposable bioreactors, submitted to Biopharm Int.

6. Ravisé A, Cameau E, De Abreu G, Pralong A. Hybrid and disposable facilities for manufacturing of biopharmaceuticals: Pros and cons. In: Eibl R, Eibl D, editors. Disposable bioreactors. Springer: Advances in Biochemical Engineering/Biotechnology; 2009. p. 185-219.

7. Porter R, Roberts T, editors. Energy savings by wastes recycling, Commissioned by European Economic Communities. Elsevier, London; 1985.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
AstraZeneca Reveals Design for New Global R&D Center and Corporate Headquarters
July 18, 2014
AbbVie to Acquire Shire for $54.7 Billion
July 18, 2014
Particulate Matter Prompts Baxter's Recall of IV Solutions
July 17, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here