Release and Stability Testing Programs for a Novel Virus-Like Particle Vaccine - Release testing involves both standard potency assays and unique assays (particle size, NA activity) developed to


Release and Stability Testing Programs for a Novel Virus-Like Particle Vaccine
Release testing involves both standard potency assays and unique assays (particle size, NA activity) developed to ensure the physical, chemical, and biological stability of this type of vaccine.

BioPharm International Supplements

Novavax Recombinant VLP Vaccines

Through the use of a recombinant baculovirus–insect host cell system, Novavax has developed a platform technology to produce VLP vaccines to multiple targets including influenza, SARS, and HIV. Influenza VLPs have been biochemically characterized and GMP-produced materials have been tested in five clinical trials, with a total of more than 5,000 subjects.1

Figure 1. Recombinant influenza virus-like particles (VLPs) and pleomorphic spherical particles
The establishment of a recombinant baculovirus containing the influenza genes for the hemagglutinin (HA) and neuraminidase proteins (NA) together with the gene for Matrix (M1) protein is the key step in this process.2 The HA and NA genes are obtained from viral RNA of relevant circulating seasonal or pandemic influenza strains by molecular means from isolated RNA. Alternately, they can be chemically synthesized and then, through a series of cloning steps, placed in a single plasmid (bacmid) under the control of baculovirus-specific transcription initiation and translation elements along with a constant M1 gene sequence shown to allow enhanced VLP formation. Transfection of the bacmid into Spodoptera frugiperda (Sf9) insect cells generates baculoviruses that encode and express the three influenza genes. Baculovirus stocks are further amplified on Sf9 cells to generate master and working virus stocks. Infection of Sf9 cells with the recombinant baculovirus allows expression of the HA, NA, and M1 proteins which form pleomorphic spherical membrane-containing particles with HA and NA protein spikes on their surface and an M1 core. An example of an influenza VLP is shown in Figure 1. These particles are released into the cell culture supernatant and then purified, resulting in the VLP vaccine. The membrane nature of these particles is different from currently licensed VLP vaccines and presents purification and characterization challenges.

VLP Production and Purification

Production and purification of influenza VLPs has been performed for Phase 2 clinical trial materials. Sf9 insect cells from a working cell bank are amplified to seed a 100-L disposable wave bioreactor cell culture, which is then infected with a master baculovirus seed. During harvest, cells are removed by tangential flow filtration (TFF) and the filtrate is concentrated and diafiltered to remove media components and cell debris.

Figure 2. Purification of virus-like particles (VLPs) using an ion exchange (IEX) column. Host cell contaminants—baculovirus (BV), DNA, and RNA—bind, whereas VLPs flow through.
VLPs are separated from baculovirus (BV) particles and contaminating RNA and DNA using a flow-through ion exchange (IEX) chromatography step in which BV, RNA, and DNA are bound to the column while VLP is allowed to flow through (Figure 2). This process step takes advantage of the charge difference between BV and VLP; BV is highly negatively charged by virtue of its DNA content, whereas VLP lacks this charge given the absence of DNA. Allowing VLP to be separated from BV without binding to the column matrix eliminates the need to modify this purification step from season to season in response to changes in the HA protein.

Figure 3. Residual host contaminants are removed by size exclusion chromatography.
Residual BV is inactivated by treatment with beta-propiolactone (BPL) and residual host contaminants are removed by size exclusion chromatography (SEC), as shown in Figure 3. The VLP preparation is sterile filtered to produce the bulk vaccine.

blog comments powered by Disqus



FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here