Design Space Development for Lyophilization Using DOE and Process Modeling - Develop a relevant design space without full factorial DoE. - BioPharm International


Design Space Development for Lyophilization Using DOE and Process Modeling
Develop a relevant design space without full factorial DoE.

BioPharm International
Volume 23, Issue 9


1. Rathore AS. A roadmap for implementation of Quality by Design (QbD) for biotechnology products. Trends Biotechnol. 2009; 27(9):546–53.

2. US Food and Drug Administration. Guidance for industry. Q8 (R2). Pharmaceutical development. Rockville, MD; Nov 2009.

3. Horvath B, Mun M, Laird MW. Characterization of a monoclonal antibody cell culture production process using a quality by design approach. Mol Biotechnol. 2010;45(3):203–6.

4. Ng K, Rajagopalan N. Application of quality by design and risk assessment principles for the development of formulation design space. In: Rathore AS, Mhatre R, editors. Quality by design for biopharmaceuticals: perspectives and case studies. Hoboken, NJ: John Wiley & Sons; 2009.

5. Xie L, Wu H, Shen M, Augsberger LL, Lyon RC, Khan MA, Hussain AS, Hoag SW. Quality-by-design (QbD): Effects of testing parameters and formulation variables on the segregation tendency of pharmaceutical powder measured by the ASTM D 6940-04 segregation tester. J Pharm Sci. 2008;97(10):4485–97.

6. Hsu CC, Walsh AJ, Nguyen HM, Overcashier DE, Koning-Bastiaan H, Bailey RC, Nail SL. Design and application of a low-temperature Peltier-cooling microscope stage. J Pharm Sci. 1996;85(1):70–4.

7. Oetjen GW, Haseley P. Freeze-drying. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.; 2004.

8. Pikal MJ. Freeze-drying of proteins, Part I; process design, BioPharm Int. 1990;3:18–28.

9. Chang BS, Fischer NL. Development of an efficient single-step freeze-drying cycle for protein formulations. Pharm Res. 1995;12(6):831–7.

10. Lim F, Martin-Moe, S, Sane SU. IBC USA Conferences Inc. A holistic approach to drug product process characterization and validation for a monoclonal antibody using QbD concepts. Process and Product Validation Event. Carlsbad, CA. 2010 Mar 1–2.

11. Nail, SL, Searles JA. Elements of quality by design in development of freeze-dried parenterals, BioPharm Int. 2008;21(1):44–52.

12. Sane SU, Hsu CC. Considerations for successful lyophilization process scale-up, technology transfer and routine production. In: Jameel F, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. Hoboken, NJ: John Wiley & Sons, Inc.; 2010.

13. Sane SU, Hsu CC. A mathematical model for a large-scale freeze-drying process: a tool for process development & efficient production. Proceedings of 16th International Drying Symposium, Hyderabad, India. 2008; pp. 680–8.

14. Overcashier DE, Patapoff TW, Hsu CC. Lyophilization of protein formulations in vials: Investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse. J Pharm Sci. 1999;88(7):688–95.

15. Pikal MJ, Shah S, Senior D, Lang JE. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by microbalance technique. J Pharm Sci. 1983; 72(6):635–50.

blog comments powered by Disqus



FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Author Guidelines
Source: BioPharm International,
Click here