Protein Characterization Through the Stages - Biomanufacturers should follow a risk-based approach to decide which methods to use to characterize their products. - BioPharm International

ADVERTISEMENT

Protein Characterization Through the Stages
Biomanufacturers should follow a risk-based approach to decide which methods to use to characterize their products.


BioPharm International Supplements


Current State of the Science


Table 1. Most commonly used characterization methods for biopharmaceutical products
Existing characterization methods are intended to provide a detailed, comprehensive analysis of protein size, charge, purity, activity, and structure (primary, secondary, and tertiary). These analyses also are used to examine impurity profiles, focusing particularly on aggregates, a key concern for regulatory agencies because of their potential immunogenicity.7 A broad range of analytical methods can be used to characterize proteins on the basis of identity, purity, yield, aggregation, specificity, and activity. These methods are used to assess comparability, form the basis for product release, determine product stability, and guide formulation development. Table 1 summarizes the most commonly used characterization methods for biopharmaceutical products.

Selecting the specific analytical methods to be used in characterizing a given biomolecule involves an assessment of the capabilities, advantages, and limitations of the available options. The sensitivity of the method in question is critical to identify minor contaminants or product variants that could potentially elicit significant immune responses in vivo. Reverse phase high performance liquid chromatography (RP-HPLC), mass spectrometry (MS), and dynamic light scattering (DLS) provide high sensitivity and are commonly used throughout the drug discovery-development-manufacturing chain. Size exclusion chromatography (SEC), analytical ultracentrifugation, and UV-Vis spectrophotometry are valued for their ability to accurately quantify specific analytes. Specificity is best determined with biological assays that mimic the desired in vivo molecular interactions in vitro, such as Western blots, enzyme assays, and cell-based assays.8 From both an operational and quality perspective, the best assays are robust, relatively insensitive to changes in sample matrix or product concentration, rapid, and easy to perform.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

New Tax Rules May Deter Future Pharma M&A
October 1, 2014
NIH Seeks to Improve Vaccine Response with New Adjuvants
September 30, 2014
New Report Details Players and Pipelines in the Biosimilar Space
September 30, 2014
Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here