Protein Characterization Through the Stages - Biomanufacturers should follow a risk-based approach to decide which methods to use to characterize their products. - BioPharm International


Protein Characterization Through the Stages
Biomanufacturers should follow a risk-based approach to decide which methods to use to characterize their products.

BioPharm International Supplements

Role of Protein Characterization at Various Stages of Bioprocessing

Protein characterization data play different roles at various stages of drug discovery, development, and manufacturing. At the discovery stage, these data form the basis for candidate screening and can provide valuable guidance on cell line and strain selection and upstream operating conditions. Assays used at this stage should be focused on determining relative yields from various cell lines or strains, examining post-translational modifications, identifying lead candidates with desirable properties (e.g., high in vitro enzyme activity, solubility at physiological pH), and screening out molecules that raise red flags regarding potential immunogenicity and half-life issues (e.g., readily oxidized or deamidated molecules).2 These analyses also can provide a preliminary assessment of short-term stability at the target pH, salt concentration, and storage conditions.

As molecules progress through the development process, protein characterization techniques are used to guide process optimization—identifying operating conditions that produce higher yields and increased purity, and limit aggregation. The data obtained also are used to support formulation development, to develop product storage and handling instructions, and to define product specifications.3 Relevant analytical methods are used for in-process monitoring of intermediates, final product analysis, and reference standard characterization in preparation for preclinical and clinical manufacturing. As biopharmaceutical products move into clinical manufacturing, detailed analyses allow systematic collection of stability data, demonstrate comparability following scale up or a manufacturing site change, and during process validation. Novel assays and increasingly sensitive analytical methods can identify minor changes in protein structure, composition, or impurity profiles which could have significant effects on in vivo immunogenicity, toxicity, and half life.4 The FDA recommends that manufacturers use orthogonal methods for analyzing biopharmaceutical product purity and identity, so a combination of different techniques must be selected that provide a balance between regulatory compliance and commercialization.5

This balance can be difficult to define, however. The FDA has advocated the use of a risk-based approach for evaluating product comparability subsequent to a manufacturing change (e.g., scale up, site transfer, process changes). This involves the manufacturer engaging in a theoretical analysis of how the change could potentially affect both the impurity profile and the product itself, and then designing a characterization program which enables detection of these "high probability" changes as well as any "high impact" changes that would significantly affect product quality, safety, or efficacy should they occur.6 Companies can leverage their experience with biological products in general and with the specific molecule in particular to conduct these comprehensive risk assessments. A change identified as high risk, i.e., likely to result in material changes to the final product, would then lead to extensive testing to determine comparability between the product pre- and post-change. Examples of high-risk changes would include moving from serum-containing to serum-free media upstream or moving from crystallization to chromatography downstream. Low-risk changes such as using a new supplier of a common buffer would dictate a less comprehensive evaluation.

blog comments powered by Disqus



FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here