Technical and Economic Benefits of Membrane Chromatography During Polishing Steps - An analysis of flow rate, load density, viral clearance, footprint, and cost. - BioPharm International

ADVERTISEMENT

Technical and Economic Benefits of Membrane Chromatography During Polishing Steps
An analysis of flow rate, load density, viral clearance, footprint, and cost.


BioPharm International
Volume 23, Issue 8

CASE STUDY BACKGROUND


Figure 3. Sequence of unit operations for a typical MAb production process
In this study, we evaluate the total CoG when the reusable AEX column chromatography was replaced by disposable membrane chromatography in a production process. The production process included upstream, recovery, and purification, and all unit operations were based on stainless steel equipment with the exception of the disposable Q membrane step in the disposable option (Figure 3). The process sequence was based on the manufacture of a mammalian-based MAb using generic production steps, derived from commercially relevant operations commonly practiced in the industry.

The mammalian production cell culture is performed in fed-batch mode with two batch seed cell culture steps. The growth and production medium is DMEM medium with additives. The feeds are glucose and glutamine solutions. Removal of the cells is achieved by centrifugation and depth filtration. The downstream purification steps are standard industrial unit operations for the production of an antibody-based product, using routine solutions and cycle times.


Table 1. Mass balance calculations
The study assumes a 2,000 L process scale with 2 g/L MAb expression titer. Table 1 shows the feed mass (3,027 g) into the AEX chromatography unit operation. Load densities of 10 kg/L for the membrane adsorbers and up to 100 g/L for the Q-column were selected. Both devices were used in the FT mode. With these assumptions, 3,027 g of product would require a 20-inch Sartobind Q capsule with 360 mL membrane volume against a 30-L column volume (20 cm bed height) of Q sepharose FF (GE Healthcare Bio-Sciences Corp.)


Table 2. Subunit operation steps for a) reusable resin-based chromatography and b) disposable membrane chromatography
The basis for the case study comparison is the steps used to define the chromatography operation (flush, equilibration, and wash). The buffers used for the disposable membrane operation are similar to that in the conventional resin-based chromatography case. Table 2 shows the subunit operations and the solution requirements for (a) the reusable column chromatography and (b) the disposable membrane chromatography. The stainless steel chromatography column requires cleaning and storage steps. The disposable nature of the membrane technology has eliminated the need for cleaning and washing, thereby reducing the amount of solutions required.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
PhRMA Report Reveals Growth Trajectories and Policy Factors Affecting Biopharmaceutical Growth
April 11, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
FDA Develops Alternative Assay to Increase Availability of Influenza Vaccines
April 10, 2014
Merck Announes Management Changes
April 7, 2014
Author Guidelines
Source: BioPharm International,
Click here