Large-Scale Freezing of Biologics: Understanding Protein and Solute Concentration Changes in a Cryovessel—Part 2 - New data about cryoconcentration behavior at large scale. - BioPharm


Large-Scale Freezing of Biologics: Understanding Protein and Solute Concentration Changes in a Cryovessel—Part 2
New data about cryoconcentration behavior at large scale.

BioPharm International
Volume 23, Issue 7

MAb Solution

Figure 4
A detailed and comprehensive map of the MAb solution frozen in the cryowedge was performed by taking cores at various positions from the top and bottom halves as shown in Figure 3 and 4. Small portions of the frozen MAb solution block had to be thawed from the sides (shown as white regions in the figures) to be able to remove the block from the wedge as discussed earlier in the methods section. A total of 107 cores were taken from the top half and 95 from the bottom half. These samples were analyzed for protein concentration and osmolality. Density also was measured of material collected from the region around sampling ports 0–8.

Figure 3a shows a map of protein concentration distribution obtained for the top half of the frozen MAb solution block. The measured concentration ranged from 3.8 to 21.7 mg/mL. The highest protein concentration was observed for core sample 5 from position 5, followed by core sample 8 from position 3, with a concentration of 21 mg/mL. The lowest protein concentrations were observed for the edge cores that were closest to the active heat transfer surfaces.

The greatest degree of solute exclusion occurred at the initial phase of ice formation because there is a larger liquid volume for the solutes to diffuse into. At the same time, the linear velocity of the ice front is slower because ice is being formed over a broader front. This reduces the amount of entrapped solute near the heat transfer surfaces. Progressive ice formation eventually concentrates the solutes into the region near the last point to freeze, around position 3. The osmolality contour map is shown in Figure 3b. The map for protein concentration and osmolality are broadly similar (Figures 3a and b). The highest osmolality value was at core sample 8 for position 3 (339 mOsm/kg) followed by core 5 at position 5 (329 mOsm/kg) as compared to the initial value of 270 mOsm/kg.

Figure 5
Protein concentration mapping for the bottom half of the frozen block is shown in Figure 4a. The relative spatial concentration distribution in the bottom half is similar to the top, but a significant difference in the absolute protein concentrations is seen between the two halves (Figure 3a compared to Figure 4a). The concentration at the edges was approximately 10 to 30 mg/mL, whereas on the top half, the edge concentration ranged from 2 to 12.5 mg/mL. The highest protein concentration measured was 65.1 mg/mL (core 2, position 3), which was three times higher than the starting concentration as well as the highest concentration observed for the top half. Osmolality values also demonstrated a similar pattern to protein concentration (Figure 4b). The maximum osmolality of 1,132 mOsm/kg (core 2, position 3) corresponds to a >4-fold increase from the initial osmolality value of 270 mOsm/kg.

blog comments powered by Disqus



Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Amgen, Sanofi, and Ono Pharmaceuticals Partner with Universities on Transmembrane Protein Research
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Novartis Sells Influenza Vaccine Business to CSL for $275 Million
October 27, 2014
Author Guidelines
Source: BioPharm International,
Click here