Partial Replacement of Chemically Defined Media with Plant-Derived Protein Hydrolysates - - BioPharm International

ADVERTISEMENT

Partial Replacement of Chemically Defined Media with Plant-Derived Protein Hydrolysates


BioPharm International Supplements


Summary

The biopharmaceutical industry faces the challenge of reducing costs while also adopting animal-component–free cell-culture systems. We have observed that although chemically defined cell culture media can be applied to biomanufacturing processes, they are expensive and often do not provide optimal performance compared to standard media supplemented with sera. This article shows that full strength or diluted CDM supplemented with plant-derived protein hydrolysates or recombinant proteins such as rHSA provide cost-effective alternatives that can significantly enhance the production titers of the protein of interest. Supplements also can work synergistically to further enhance cell-culture performance.

In addition to the beneficial performance results shown here for CHO and SP2/0 cell lines, other examples have been reported in the literature for CHO,8,10–14 SP2/0,16 and many other animal host cell lines used in biomanufacturing, including BHK,21,22,24,30,31 VERO, 23,24,26,27,29 HEK,33–35 MRC,32 NS0, CEF, insect lines like Sf9 and High Five,36–40 and plant cells.42–45 These examples show the broad applicability of the approach outlined in this article.

By providing the benefits of enhanced cell density and cell viability, underscored by significant target protein production, plant-derived hydrolysates can be used as valuable and practical tools to improve cell culture performance. The inclusion of such supplements has become more and more popular during the development and optimization of upstream processes. Today, 6 out of 10 biopharmaceutical manufacturers have indicated they are actively using protein hydrolysate supplements.9

JAMES BABCOCK, PHD, is the global applications manager of cell culture at the Sheffield Bio-Science Center for Cell Culture Technology. CHRISTOPHER WILCOX, PHD, is the global market segment manager of cell culture and HANS HUTTINGA is the global business development director of cell nutrition, both at Sheffield Bio-Science, a Kerry Group Business, Beloit, WI, 800.833.8308,

References

1. Babcock JF, Merrill DA, Smith SR. A novel approach to the production of plant-derived hydrolysates yields medium supplements with enhanced performance in cell culture systems. Poster presentation at 19th Meeting of the European Society of Animal Cell Technology (ESACT), Berlin; 2007.

2. Ganglberger P, Obermüller B, Kainer M, Hinterleitner P, Doblhoff O, Landauer K. Optimization of culture medium with the use of protein hydrolysates. In: Smith P, ed. Cell technology for cell products. Springer Netherlands; 2007. pp. 553–7.

3. Ballez, JS, Mols J, Burteau C, Agathos SN, Schneider YJ. Plant protein hydrolysates support CHO-320 cells proliferation and recombinant IFN-γ production in suspension and inside micro carriers in protein-free media. Cytotechnol. 2004;44(3): 103–14.

4. Merten OW, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, et al. The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnol. 1999;30(1–3):191.

5. Babcock JF, Antosh A, Hassan T. Partial replacement of chemically defined CHO media with plant-derived protein hydrolysates: Part 1. Poster presentation at 21st Meeting of the European Society of Animal Cell Technology (ESACT). Dublin; 2009.

6. Babcock JF, Antosh A. Partial replacement of chemically defined CHO media with plant-derived protein hydrolysates: Part 2–metabolic effect of hydrolysates. Poster presentation at BioProcess International Conference & Exhibition. Raleigh; 2009.

7. Babcock JF, Antosh A. Performance enhancing synergy between a wheat hydrolysate and recombinant human serum albumin in SP2/0 hybridoma cells. Poster presentation at IBC Antibody Development & Production conference. Carlsbad; 2010.

8. Babcock J, Smith S, Huttinga H, Merrill, D. Enhancing performance in cell culture. Gen Eng News. 2007;27(20):47–8.

9. Sheffield BioScience – company confidential. Internal survey of biopharma producers at IBC Antibody Production Conference. Carlsbad, CA; 2007.

10. Ballez JS, Mols J, Burteau C, Agathos SN, Schneider YJ. Plant protein hydrolysates support CHO-320 cells proliferation and recombinant IFN-γ production in suspension and inside micro carriers in protein-free media. Cytotechnol. 2004;44(3): 103–14. (CHO-K1-origin)

11. Burteau CC, Verhoeye F, Mols JF, Ballez JS, Agathos SN, Schneider YJ.). Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-gamma-producing CHO cell line. In Vitro Cell Dev Biol Animal. 2003;39(7):291–96. (CHO-K1-origin)

12. Kim DY, Lee JC, Chang HN, Oha DJ. Development of serum-free media for a recombinant CHO cell line producing recombinant antibody. Enz Microbiol Technol. 2006;39:426–33. (DG44-origin)

13. Kim SH, Lee GM. Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments. Applied Microbiol Biotechnol. 2009;83(4):639–48. (DG44-origin)

14. Sung YH, Lim SW, Chung JY, Lee GM. Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese Hamster Ovary cells. Appl Microbiol Biotechnol. 2004;63(5):527–36. (DUKX-B11-origin)

HYBRIDOMA

15. Bonarius HPJ HV, Meesters KPH, de Gooijer CD, Schmid G, Tramper J. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng. 1996;50:299–318. (Murine)

16. Ganglberger P, Obermüller B, Kainer M, Hinterleitner P, Doblhoff O, Landauer K. Optimization of culture medium with the use of protein hydrolysates. In: Smith P, ed. Cell technology for cell products. Springer Netherlands; 2007. pp. 553–7. (SP2/0)

17. Iding K, Büntemeyer H, Gudermann F, Deutschmann SM, Kionka C, Lehmann J. An automatic system for the assessment of complex medium additives under cultivation conditions. Biotechnol Bioeng. 2001;73(6):442–48. (Murine)

18. Jan DC, Jones SJ, Emery AN, Al-Rubeai M. Peptone, a low-cost growth-promoting nutrient for intensive animal cell culture. Cytotechnol. 1994;16(1):17–26. (NS1-derived)

19. Schlaeger EJ. The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol Methods. 1996;194(2):191–99. (Murine-various)

20. Zhang Y, Zhou Y, Yu J. Effects of peptone on hybridoma growth and monoclonal antibody formation. Cytotechnol. 1994;16(3):147–50. (Murine-WuT3)

VACCINE LINES

21. Heidemann R, Zhang C, Qi H, Rule J L, Rozales C, Park S, et al. The use of peptones as medium additives for the production of a recombinant therapeutic protein in high-density perfusion cultures of mammalian cells. Cytotechnol. 2000;32(2):157–67. (BHK)

22. Keay L. Autoclavable low cost serum free cell culture media. The growth of L-cells and BHK cells on peptones. Biotechnol Bioeng. 1975;17(5):745–64. (L-cells, BHK)

23. Keay L. The growth of L-cells and Vero cells on an autoclavable MEM-peptone medium. Biotechnol Bioeng. 1977;19(3):399–411. (L-cells, Vero)

24. Merten OW, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, et al. The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnology. 1999;30(1–3):191. (BHK, MDCK, Vero)

25. Mazurkova NA, Kolokol'tsova TD, Nechaeva EA, Shishkina LN, Sergeev AN. The use of components of plant origin in the development of production technology for live cold-adapted cultural influenza vaccine. Bulletin Experimental Biol Med. 2008;146(1):144–47. (MDCK)

26. Mazurkova NA, Troshkova GP, Sumkina TP, Kolokol'tsova TD, Skarnovich MO, Kabanov AS, et al. Comparative analysis of reproduction of influenza virus strains in cell lines perspective for the creation of cultural vaccines grown on nutrient medium on the basis of rice flour protein hydrolysate. Bulletin Experimental Biol and Med. 2008;146(4):547–50. (MDCK, Vero)

27. Mazurkova N, Ryabchikova E, Troshkova G, Getmanova T, Sumkina T, Shishkina L, et al. Morphological and proliferative characteristics of Vero and MDCK cells during culturing in nutrient media on the basis of hydrolysates of plant proteins. Bull Experim Biol Med. 2009;147(4):551–54. (MDCK, Vero)

28. Mochizuki, M. Growth characteristics of canine pathogenic viruses in MDCK cells cultured in RPMI1640 medium without animal protein. Vaccine. 2006;24(11):1744–8. (MDCK)

29. Rourou S, van der Ark A, van der Velden T, Kallel H. Development of an animal-component free medium for Vero cells culture. Biotechnol Progress. 2009;25(6):1752–61. (Vero)

30. Saha SN, Sen AK. Studies on the development of a medium with peptone and casein hydrolysate for the production of foot-and-mouth disease vaccine in BHK-21 cells. Vaccine. 1989;7(4):357–63. (BHK)

31. Saha SN, Sen AK. Partial replacement of serum with peptone and lactalbumin hydrolysate for the production of foot-and-mouth disease vaccine in BHK-21 cells. Acta Virologica. 1989;33(4):338–43. (BHK)

HUMAN CELLS

32. Chun BH, Lee YK, Bang WG, Chung N. Use of plant protein hydrolysates for varicella virus production in serum-free medium. Biotechnol Letters. 2005;27(4):243. (MRC-5)

33. Han X, Sun L, Fang Q, Li D, Gong X, Wu Y, Yang S, Bing S. Transient expression of osteopontin in HEK 293 cells in serum-free culture. Enz Microbial Technol. 2007;41:133–40. (HEK 293)

34. Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, et al. Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: Peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng. 2003;84(3):33–42. (HEK 293)

35. Pham PL, Perret S, Cass B, Carpentier E, St.-Laurent G, Bisson L, et al. Transient gene expression in HEK293 cells: Peptone addition posttransfection improves recombinant protein synthesis. Biotechnol Bioeng. 2005;90(3):332–44. (HEK 293)

INSECT CELLS

36. Agathos SN. Development of serum-free media for lepidopteran insect cell lines. Methods Mol Biol. 2007;388:155–85. (Spodoptera frugiperda and Trichoplusia ni)

37. Donaldson MS, Shuler M. Low-cost serum-free medium for the BTI-Tn5B1-4 insect cell line. Biotechnol Progress. 1998;14(4):573–79. (BTI-Tn5B1-4, [High-Five])

38. Ikonomou L, Bastin G, Scheider YJ, Agathos SN. Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell Dev Biol Animal. 2001;37:549–59. (Sf-9 and High-Five)

39. Kwon MS, Dojima T, Park EY. Use of plant-derived protein hydrolysates for enhancing growth of Bombyx mori (silkworm) insect cells in suspension culture. Biotechnol Appl Biochem. 2005;42:1–7. (Bombyx mori)

40. Mendonça RC, DeOliveira EC, Pereira CA, Lebrun I. Effect of bioactive peptides isolated from yeastolate, lactalbumin and N-Z Case in the insect cell growth. Bioprocess Biosys Eng. 2007;30(3):157–64. (Sf-9)

PLANT CELLS

41. Anjum S, Zia M, Chaudhary MF. Investigations of different strategies for high frequency regeneration of Dendrobium malones 'Victory'. African J Biotechnol. 2006;5(19):1738–43. (Dendrobium malones)

42. Gamborg OL, LaRue TAG. Ethylene Production by Plant Cell Cultures. The effect of auxins, abscisic acid, and kinetin on ethylene production in suspension cultures of Rose and Ruta cells. Plant Physiology. 1971;48:399–401. (Rosa sp. and Ruta sp.)

43. Gamborg, OL, Miller, RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Experim Cell Res. 1968;50(1):151–58. (Glycine max)

44. Parc G, Rembur J, Rech P, Chriqui D. In vitro culture of tobacco callus on medium containing peptone and phytate leads to growth improvement and higher genetic stability. Plant Cell Reports. 2007;26(2):145–152. (Nicotiana tabacum)

45. Ranch JP, Giles KL. Factors affecting growth and aggregate dissociation in batch suspension cultures of Datura innoxia (Miller). Annals Botany. 1980;46(6):667–83. (Datura innoxia)


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

New Tax Rules May Deter Future Pharma M&A
October 1, 2014
NIH Seeks to Improve Vaccine Response with New Adjuvants
September 30, 2014
New Report Details Players and Pipelines in the Biosimilar Space
September 30, 2014
Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here