Designing in Quality: Approaches to Defining the Design Space for a Monoclonal Antibody Process - How to use risk assessment strategies to integrate operations. - BioPharm International

ADVERTISEMENT

Designing in Quality: Approaches to Defining the Design Space for a Monoclonal Antibody Process
How to use risk assessment strategies to integrate operations.


BioPharm International
Volume 23, Issue 5

Establishing a Control Strategy for Acidic Species


Figure 9
The two-round DOE study indicated that acidic species level was not sensitive to pH, DO, nutrient feed rate, or cell density at the initiation of feeding within the studied range (knowledge space). Therefore, the control strategy focused on the three significant parameters: temperature, seeding cell density, and process duration. The effect of these three parameters is cumulative. If the three parameters were investigated separately in single-variable studies, a design space similar to the one illustrated in Figure 9a would be established. However, the multivariate study showed that a small portion of this space would result in unacceptable product. We evaluated two options to define the design space, a structured one (Figure 9b) and a truncated one (Figure 9c). Although the structured space is easier to implement, the operation ranges are narrow, especially for temperature (35.5–37.0 C). For this limitation, we chose the truncated space, which allowed us to expand operating ranges without compromising product quality. Specifically, we removed the combination of high seeding density (>4 x 105 viable cells/mL) and long process duration (>11.5 days).

An Integrated Approach to Defining the Design Space

One of the key challenges in defining a design space based on results from these multifaceted studies is that they are not amenable to the comparatively simple "contour plots" that typically are used when defining the design space. For example, in this simplified approach, the functional relationship (obtained through an empirical statistical model) between the process parameters and quality attributes is used to predict the expected range of quality attributes for a given level of process parameters. The parameter ranges that provide acceptable levels of all the quality attributes (the common areas) are then described as the design space for the process parameters for that step.


Figure 10
Although this approach is acceptable for simple focus areas that are essentially independent, it is of limited use when applied to more complex focus areas (as is often the case in bioprocesses). MAb manufacturing processes invariably involve process parameters that are outputs or attributes of prior unit operations. As an example, we can look at the acetate ion and tris ion concentrations that are process parameters for the anion exchange chromatography (AEX) and cation exchange chromatography (CEX) steps, which are the unit operations that typically follow the low pH inactivation step in a MAb process. The AEX and CEX chromatography steps are affected by changes in the inactivation pH, which is an input parameter for the low pH inactivation step. Figure 10 shows the effect of the change in inactivation pH on acetate and tris ion concentrations. To identify the design space that is acceptable for the entire process, the effect of the parameters affecting performance in subsequent steps must be understood.


Figure 11
Therefore, in addition to using outputs (quality attributes) from one focus area as inputs (parameters) in other focus areas, we also used challenge studies to evaluate the interrelationships between the several focus areas, with the ultimate goal of ensuring product quality and process performance. An example of an experimental design for a challenge study is provided in Figure 11. The results from these studies are then used to further refine the design space. For example, if the CEX step is able to clear high levels of impurities generated under the suboptimal conditions, that provides flexibility for defining the design space for the previous steps.

Another aspect of process integration involves evaluating risk by combining the understanding of the effect of parameters on quality attributes with operational considerations (e.g., facility, equipment, procedures, controls). In this approach, the severity score of the failures modes and effects analysis (FMEA) is derived from the process understanding studies and combined with the occurrence and detectability scores to provide an overall risk assessment, which can then be used to assess parameter criticality. This approach makes it possible to establish the design space and the associated control strategies while considering the process as the whole, thus enabling Quality by Design.

CONCLUSIONS

Pfizer has developed a systematic strategy for implementing Quality by Design (QbD) principles for process understanding and design. This strategy was used to develop and characterize a monoclonal antibody production process. Combined with design of experiments (DOE), especially multivariate analyses, this strategy allowed us to focus on high-risk process parameters and study these parameters as integral components of the process. The effective characterization of a scale-down bioreactor model also aided in this process. This QbD process design enriches process understanding, boosts manufacturing process robustness to consistently deliver safe and efficacious product, spurs technological innovation and new approaches to process design and validation, and helps minimize and mitigate risk.

Amit Banerjee, PhD, is a research fellow at Pfizer Global Research & Development, St. Louis, MO, 636.247.5516,
. NingNing Ma and Natarajan Ramasubramanyan also contributed to this article.

REFERENCES

1. US Food and Drug Administration. Guidance for industry. Quality system approach to pharmaceutical CGMP regulations. Rockville, MD: 2006.

2. International Conference on Harmonization (ICH). Q8(R1), Pharmaceutical development. Geneva, Switzerland; 2007.

3. US FDA. Pharmaceutical CGMPs for the 21st Century—a risk-based approach. Final report. Rockville, MD; 2004.

4. Ende D, Bronk KS, Mustakis J, O'Conor G, Santa Maria CL, Nosal R, Watson TJ. API Quality by Design. Example from the torcetrapib manufacturing process. J Pharm Innov. 2007;2(3–4):71–86.

5. ICH. Q9, Quality risk management. Geneva, Switzerland; 2006.

6. ICH. Q10, Pharmaceutical quality systems. Geneva, Switzerland; 2008.

7. Godavarti R, Petrone J, Robinson J, Wright R, Kelly BD. Scale down models for purification processes. Process. In: A. S. Rathore and Gail S. Sofer, editors, Validation in manufacturing of biopharmaceuticals. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2005. p. 69–142, .

8. Godoy-Silva R, Chalmers JJ, Casnocha SA, Bass LA, Ma N. Physiological responses of CHO cells to repetitive hydrodynamic stress. Biotechnol bioeng. 2009;103(6):1103–17.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

EMA Warns of Falsified Herceptin Vials
April 16, 2014
Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
PhRMA Report Reveals Growth Trajectories and Policy Factors Affecting Biopharmaceutical Growth
April 11, 2014
Author Guidelines
Source: BioPharm International,
Click here