Designing in Quality: Approaches to Defining the Design Space for a Monoclonal Antibody Process - How to use risk assessment strategies to integrate operations. - BioPharm International

ADVERTISEMENT

Designing in Quality: Approaches to Defining the Design Space for a Monoclonal Antibody Process
How to use risk assessment strategies to integrate operations.


BioPharm International
Volume 23, Issue 5

Risk Assessment for Prioritization


Figure 2
A typical monoclonal antibody (MAb) manufacturing process involves >20 distinct unit operations with >200 process parameters, and more than 50 different raw materials, making the complexity level significantly higher than that of a small-molecule drug. Therefore, a clear and efficient strategy is required to identify high-risk process parameters for process characterization.


Figure 3
A multidisciplinary team consisting of representatives from the quality, process development, regulatory, manufacturing, and analytical groups actively participates in the risk-assessment process, using data and knowledge from various sources, including previous development, platform process knowledge, manufacturing data from relevant bioprocesses, and literature information. The inputs for risk assessments are summarized in Figure 2. The output from the risk-assessment exercise is captured in a "process understanding plan."


Table 1. "Cause/Effect" matrix (abbreviated) for an upstream focus area. The scale is 1 to 10, with 10 being the most significant.
The process for risk assessment leading to experiment prioritization is illustrated in Figure 3. Based on equipment and operation similarity, the process was segmented into various focus areas with defined boundaries. For each focus area, the relevant quality attributes are ranked according to a predefined scale (1 to 10). Then, the effect of each process parameter on every relevant quality attribute is assessed using a predefined scale (1 to 10). Based on this ranking, a cumulative score is calculated for each parameter. This score represents the relative importance of the parameter for the focus area and is used to prioritize experiments.


Table 2. "Cause/Effect" matrix (abbreviated) for a downstream focus area. The scale is 1 to 10, with 10 being the most significant.
Tables 1 and 2 provide two abbreviated examples of a "cause and effect matrix" for an upstream cell culture and a downstream purification process. The examples include the rankings for quality attributes as well as the rankings of the impact of process parameters on quality attributes. The parameters are ranked based on the calculated scores.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

NIH Launches Human Safety Study of Ebola Vaccine Candidate
August 29, 2014
Suppliers Seek to Boost Single-Use Technology
August 21, 2014
Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
USP Awards Analytical Research
August 15, 2014
Author Guidelines
Source: BioPharm International,
Click here