Applying Computational Fluid Dynamics Technology in Bioprocesses-Part 1 - Computational fluid dynamics is a powerful tool to optimize processes. - BioPharm International

ADVERTISEMENT

Applying Computational Fluid Dynamics Technology in Bioprocesses-Part 1
Computational fluid dynamics is a powerful tool to optimize processes.


BioPharm International
Volume 23, Issue 4

ACKNOWLEDGEMENTS

The author would like to thank his former colleagues in process development, manufacturing and research at Amgen for explaining their needs to him and enriching his understanding of bioprocesses through many years of collaboration.

Zhiwu (David) Fang is the founder and principal consultant of Systems Quality-by-Design, Inc., Newbury Park, CA, 626.716.2016,

REFERENCES

1. Thompson TB, Kontomaris K. Technology roadmap for computational fluid dynamics. 1999. Available from: http://www.chemicalvision2020.org/cfd.html.

2. Hassan YA, Schmidl W, Ortiz-Villafuerte. Investigation of three-dimensional two-phase flow structure in a bubbly pipe flow. J Meas Sci Technol. 1998;9(3):309–326.

3. Pordal HS, Matice CJ, Fry TJ. The role of computational fluid dynamics in the pharmaceutical industry. Pharm Technol. 2002;26(2):72–77.

4. Kremer DM, Hancock BC. Process simulation in the pharmaceutical industry: a review of some basic physical models. J Pharm Sci. 2006;95(3):517–529.

5. Wassgren C. The application of computational modeling to pharmaceutical materials science. MRS Bulletin. 2006;31(11):900–4.

6. Kremer DM, Hancock BC. Process simulation in the pharmaceutical industry: A review of some basic physical models. J Pharm Sci. 2006;95(3):517–29.

7. Anderson JD. Computational fluid dynamics: the basics with application. New York: McGraw Hill; 1995.

8. Derksen JJ. Numerical simulation of solid suspension in a stirred tank. AIChE J. 2003;49:2700–14.

9. Decker S, Sommerfeld M. Calculation of particle suspension in agitated vessels with the Eulerian-Lagrange approach. Inst Chem Eng Symp Ser. 1996;140:71–82.

10. Crowe CT, Sommerfeld M, Tsuji Y. Fundamentals of gas-particle and gas-droplet flows. Boca Raton: CRC Press; 1998.

11. Barrue H, Bertrand J, Cristol B, Xuereb C. Eulerian simulation of dense solid–liquid suspension in multi-stage stirred vessel. J Chem Eng Jpn. 1999;34:585–94.

12. Bakker A, Fasano JB, Myers KJ. Effect of flow pattern on the solids distribution in a stirred tank. 8th European Conference on Mixing, IChemE Symposium Series No. 136. 1994 Sept 21–23; Cambridge, UK.

13. Micale G, Montante G, Grisafi F, Brucato A, Godfrey J. CFD simulation of particle distribution in stirred reactors. Trans Inst Chem Eng. Part A. 2000;78:435–44.

14. Micale G, Girsafi F, Rizzuti L, Brucato A. CFD simulation of particle suspension height in stirred vessels. Chem Eng Res Des. 2004;82:1204–13.

15. Ljungqvist M, Rasmuson A. Numerical simulation of the two-phase flow in an axially stirred reactor. Part A Trans Inst Chem Eng. 2001;79:533–46.

16. Montante G, Micale G, Magelli F, Brucato A. Experiments and CFD prediction of solid particle distribution in a reactor agitated with four pitched blade turbines. Trans Inst Chem Eng Part A. 2001;79:1005–10.

17. Barrue H, Bertrand J, Cristol B, Xuereb C. Eulerian simulation of dense solid–liquid suspension in multi-stage stirred vessel. J Chem Eng Jpn. 2001;34(5):585–594.

18. Jenne M, Reuss M. A critical assessment on the use of k-ε turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors. Chem Eng Sci. 1999;54(17):3921–41.

19. Bakker A, Van den Akker HEA. Single phase flow in stirred reactors. Chem Eng Res Des. 1998;72:583–593.

20. Jaworski Z, Zakrzewska B. Modelling of the turbulent wall jet generated by a pitched blade turbine impeller: the effect of turbulence model. Chem Eng Res Des. 2002;80(8):846–854.

21. Armenante PM, Luo C, Chou C-C, Fort I, Medek J. Velocity profiles in a closed, unbaffled vessel: comparison between experimental LDV data and numerical CFD predictions. Chem Eng Sci. 1997;52(20):3483–92.

22. Alcamo R, Micale G, Grisafi F, Brucato A, Ciofalo M. Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem Eng Sci. 2005;60(8–9):2303–16.

23. Murthy BN, Joshi JB. Assessment of standard k-ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem Eng Sci. 2008;63(22):5468–95.

24. Torré J-P, Fletcher DF, Lasuye T, Xuereb C. Single and multiphase CFD approaches for modelling partially baffled stirred vessels: Comparison of experimental data with numerical predictions. Chem Eng Sci. 2007;62(22):6246–62.

25. Revstedt J, Fuchs L, Tragardh C. Large eddy simulation of the turbulent flow in a stirred tank. Chem Eng Sci. 1998;53:4041–53.

26. Eggels JGM. Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int J Heat Fluid Flow. 1996;17(3):307–23.

27. Derksen J, Harry J, Van den Akker EA. Large eddy simulations on the flow driven by a Rushton turbine. AIChE J. 1999;45(2):209–21.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Suppliers Seek to Boost Single-Use Technology
August 21, 2014
Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
USP Center in Ghana Receives International Lab Accreditation
August 15, 2014
USP Awards Analytical Research
August 15, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
Author Guidelines
Source: BioPharm International,
Click here