A Study of Leachables for Biopharmaceutical Formulations Stored in Rubber-Stoppered Glass Vials - A systematic approach facilitates formulation component selection. - BioPharm International

ADVERTISEMENT

A Study of Leachables for Biopharmaceutical Formulations Stored in Rubber-Stoppered Glass Vials
A systematic approach facilitates formulation component selection.


BioPharm International
Volume 23, Issue 4

RESULTS AND DISCUSSION

Headspace GC–MS Analysis Extractables Evaluation


Table 5. Quantitation of extractables/leachables with headspace GC–MS
The water extracts of stoppers yielded seven extractables peaks (Figure 1). Six of the seven peaks were identified as 2-methylpentane (4.24 min), 3-methylpentane (4.62 min), hexane (5.14 min), methylcyclopentane (6.24 min), cyclohexane (7.93 min), and butylated hydroxytoluene (BHT, 33.26 min). The peak at 28.60 min was not identified; the GC–MS library search and manual spectral interpretation did not produce a good match or a tentative identification. The amounts for each peak are summarized in Table 5. The peak at 28.60 min was quantitated using cyclohexane as the surrogate standard. Because the relative response factor of the unknown peak against cyclohexane is not determined, the amount reported for this peak is only considered a semi-quantitative estimate.

Leachables Evaluation


Figure 1
Six leachables peaks were observed in the headspace GC–MS analysis from the formulations: 2-methylpentane, 3-methylpentane, hexane, methylcyclopentane, cyclohexane, and BHT. These leachables peaks correlate to stopper extractables. The unknown extractables at 28.60 min were not observed as leachables. This may be because of insolubility of the compound in the aqueous media. The amount of leachables in different formulations is summarized in Table 5. The effect of various formulation ingredients on the leachables profile is discussed in detail below.

Phosphate Buffer with or without Glycerol Co-Solvent

Five leachables peaks were observed in the pH 6.8 phosphate buffer: 3 methylpentane, hexane, methylcyclopentane, cyclohexane, and BHT. All of the peaks were very small. Methylcyclopentane was the largest leachables peak, probably because it is more soluble in aqueous media than the other compounds. The addition of 2% glycerol in the phosphate buffer as a co-solvent did not significantly affect the amount of leachables observed.

Formulation pH


Figure 2
Formulation pH had an impact on leachables. The neutral pH (pH 6.8) provided slightly lower amounts of leachables compared to the slightly acidic (pH 5.0) and the slightly alkaline (pH 8.2) formulations (Figure 2). The acidic and alkaline formulations had similar leachable profiles.

EDTA Chelating Agent

Based on the leachables profiles of formulations containing 0, 0.1, and 0.5 mM EDTA, EDTA did not significantly affect the amount of organic leachables.

Tween 80


Figure 3
The excipient Tween 80 had the most significant effect on leachables compared to other formulation ingredients. The addition of Tween 80 significantly increased the leached amount of 2-methylpentane, 3-methylpentane, hexane, methylcyclopentane, and cyclohexane. The leached amounts of these compounds in the formulation with 0.5% Tween 80 is five to 10 times higher than in formulations without Tween 80. This is because the surfactant increases the solubility of these compounds in the aqueous formulation (Figure 3). However, the addition of Tween 80 did not affect the amount of leached BHT because no BHT was detected in the formulations with 0.5% or 0.1% Tween 80.

Bulking Agents: Sucrose, Mannitol, and Trehalose


Figure 4
The use of bulking agents affected the amount of leachables observed. Higher amounts of leachables were observed in the formulation with 7% mannitol compared to the formulation with 7% trehalose, in which few leachables were observed (Figure 4). The formulation with 7% sucrose had leachables levels between those seen in formulations with mannitol and trehalose.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
PhRMA Report Reveals Growth Trajectories and Policy Factors Affecting Biopharmaceutical Growth
April 11, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
FDA Develops Alternative Assay to Increase Availability of Influenza Vaccines
April 10, 2014
Merck Announes Management Changes
April 7, 2014
Author Guidelines
Source: BioPharm International,
Click here