Characterizing the Formulation Design Space - Design of experiments is a valuable tool for identifying aspects of a formulation that are critical to product quality. - BioPharm International

ADVERTISEMENT

Characterizing the Formulation Design Space
Design of experiments is a valuable tool for identifying aspects of a formulation that are critical to product quality.


BioPharm International
Volume 23, Issue 3

CONCLUSION

Quality by Design tools such as design of experiments (DOE) help to provide a more thorough understanding of a product's design space. Excipient robustness studies using DOE are, thus, used to evaluate and characterize the formulation design space. The formulation design space is identified by the ranges established during the excipient robustness study to provide an assurance of quality in the product. Controls included in manufacturing batch records and product specifications ensure that the product is maintained within the formulation design space so that the quality of the product and safety of the patient are ensured.

At the time of the article's writing, Adeola O. Grillo, PhD, was a senior scientist in the department of drug product sciences, biopharmaceutical development, Human Genome Sciences, Rockville, MD. She is currently an assistant professor in the department of pharmaceutical sciences at the Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, 210.883.1099,
Martin Kane is an associate director of process statistics in the department of biostatistics, Neçois Penn is a bioprocess associate in the department of drug product sciences, and Melissa Perkins, PhD, is the director of the department of drug product sciences, all in biopharmaceutical development at Human Genome Sciences, Rockville, MD,
.

REFERENCES

1. US Food and Drug Administration. Guidance for industry. Pharmaceutical cGMPs for the 21st century—A risk-based approach final report. Rockville, MD; 2004 Sept.

2. International Conference on Harmonization (ICH). Q8(R1), Pharmaceutical Development. Geneva, Switzerland; 2008 Nov.

3. ICH. Q9, Quality Risk Management. Geneva, Switzerland; 2005 Nov.

4. ICH. Q10, Pharmaceutical Quality System. Geneva, Switzerland; 2008 June.

5. Bedu-Addo F, Moreadith R, Advant SJ. Preformulation development of recombinant pegylated staphylokinase SY161 using statistical design. AAPS PharmSci. 2002;4(4):E19.

6. Cleland JL, Lam X, Kendrick B, Yang J, Yang TH, Overcashier D, et al. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci. 2001;90(3):310–21.

7. Andya JD, Maa YF, Costantino HR, Nguyen PA, Dasovich N, Sweeney TD, et al. The effect of formulation excipients on protein stability and aerosol performance of spray-dried powders of a recombinant humanized anti-IgE monoclonal antibody. Pharm Res. 1999;16(3):350–8.

8. Gupta S, Kaisheva E. Development of a multidose formulation for a humanized monoclonal antibody using experimental design techniques. AAPS PharmSci. 2003;5(2):E8.

9. Fransson J, Hagman A. Oxidation of human insulin-like growth factor I in formulation studies, II. Effects of oxygen, visible light, and phosphate on methionine oxidation in aqueous solution and evaluation of possible mechanisms. Pharm Res. 1996;13(10):1476–81.

10. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M. Quality by design—spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–38.

11. Guo C, Stine KJ, Kauffman JF, Doub WH. Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design. Eur J Pharm Sci. 2008;35(5):417–26.

12. Dayal P, Pillay V, Babu RJ, Singh M. Box-Behnken experimental design in the development of a nasal drug delivery system of model drug hydroxyurea: characterization of viscosity, in vitro drug release, droplet size, and dynamic surface tension. AAPS PharmSciTech. 2005;6(4):E573–85.

13. Zidan AS, Sammour OA, Hammad MA, Megrab NA, Habib MJ, Khan MA. Quality by design: understanding the formulation variables of a cyclosporine. A self-nanoemulsified drug delivery systems by Box-Behnken design and desirability function. Int J Pharm. 2007;332(1-2):55–63.

14. Campisi B, Chicco D, Vojnovic D, Phan-Tan-Luu R. Experimental design for a pharmaceutical formulation: optimisation and robustness. J Pharm Biomed Anal. 1998;18(1–2):57–65.

15. Gabrielsson J, Sjöström M, Lindberg NO, Pihl AC, Lundstedt T. Robustness testing of a tablet formulation using multivariate design. Drug Dev Ind Pharm. 2006;32(3):297–307.

16. Stoner MR, Fischer N, Nixon L, Buckel S, Benke M, Austin F, Randolph TW, Kendrick BS. Protein-solute interactions affect the outcome of ultrafiltration/diafiltration operations. J Pharm Sci. 2004;93(9):2332–42.

17. Harinarayan C, Skidmore K, Kao Y, Zydney AL, van Reis R. Small molecule clearance in ultrafiltration/diafiltration in relation to protein interactions: Study of citrate binding to a Fab. Biotechnol Bioeng. 2009;102(6):1718–22.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
AstraZeneca Reveals Design for New Global R&D Center and Corporate Headquarters
July 18, 2014
AbbVie to Acquire Shire for $54.7 Billion
July 18, 2014
Particulate Matter Prompts Baxter's Recall of IV Solutions
July 17, 2014
Author Guidelines
Source: BioPharm International,
Click here