End-to-End Deployment of Single-Use Technology in Aseptic Filling of Vaccines at GSK - How this Big Pharma company successfully implemented disposable technologies in its manufacturing plant. - BioPha

ADVERTISEMENT

End-to-End Deployment of Single-Use Technology in Aseptic Filling of Vaccines at GSK
How this Big Pharma company successfully implemented disposable technologies in its manufacturing plant.


BioPharm International
Volume 23, Issue 2

CONCLUSION

The track record and experience gained in the use of disposables in a good manufacturing practices (GMP) environment for active pharmaceutical ingredients (API) manufacture has led to an upsurge in interest in recent years in the use of disposable technologies in the fill–finish arena. Recent developments in disposable filling sets for small- and large-scale liquid filling lines, together with disposable rapid transfer port technologies has meant that, for the first time, a disposable fluid path from the formulation vessel to the vial or syringe can be established, thus realizing the full potential of the technology.

The case study confirms that the benefits seen in bulk API manufacture also are realized in the fill–finish facility, specifically with regard to reduced costs, reduced energy usage, and reduced labor.1,2 Based on the outcomes of this case study, the future for disposables use in the final filling arena has significant potential to simplify process operations. This would reduce process risk, significantly reduce carbon footprint, and save considerable time in process operations, notably through reducing the time required for assembly and eliminating the requirement for disassembly of equipment, eliminating time required for cleaning and steaming operations, thus increasing available capacity (in this case by 40%).

Although a full cost analysis was not carried out, it is clear that the cost savings are significant, notably in terms of the number of extra days of manufacturing that become available, along with significantly reduced WFI requirements.

Of course, disposable technology requires further testing and fine-tuning before being suitable for implementation on a routine basis. In particular, the issue of supply chain security—validating a second source—must be addressed. With regard to integrity testing of disposable systems, an industry consensus on what are acceptable and sensible detection limits would be helpful. This is where the industry association disposable user groups within the ISPE, PDA, BPSA, and ASME must work together to provide one unique recommendation.

Andrew Sinclair is the managing director and Miriam Monge is the vice president of marketing and disposables implementation, both at Biopharm Services, Chesham, Bucks, UK, +44 1494 793 243,
Miriam is also the European chair of ISPE's Community of Practice for Disposable Technologies.

ACKNOWLEDGEMENTS

The authors would like to thank Nigel Bell and Ernie Jenness for their time and active collaboration in preparing this column.

REFERENCES

1. Sinclair A, Leveen L, Monge M, Lim J, Cox S. The environmental impact of disposable technologies. Supp BioPharm Int. 2008 Nov:4–15.

2. Cronin E. Disposables and containment technology in biomanufacturing: managing risk, reducing cost. ISPE Strasbourg Conference; 2009 September 28–29; Strasbourg, France.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
AstraZeneca Reveals Design for New Global R&D Center and Corporate Headquarters
July 18, 2014
AbbVie to Acquire Shire for $54.7 Billion
July 18, 2014
Particulate Matter Prompts Baxter's Recall of IV Solutions
July 17, 2014
Author Guidelines
Source: BioPharm International,
Click here