Disposables in Rapid Response Manufacturing: The Next Steps - Suppliers, manufacturers, and governments must work together to plan how best to develop and deploy disposable systems for emergency respo

ADVERTISEMENT

Disposables in Rapid Response Manufacturing: The Next Steps
Suppliers, manufacturers, and governments must work together to plan how best to develop and deploy disposable systems for emergency response.


BioPharm International
Volume 22, Issue 12

THE SOLUTION?

Focusing just on the manufacturing element, the ideal approach would be to have stockpiles of product (a good example in the pandemic is Tamiflu), but in reality, unless we have a clearly identified threat, it is difficult to stockpile. For a generalized response, therefore, we are looking at two options:

1. Modular deployable manufacturing units. This assumes that we can quickly mobilize and send these to the areas where manufacturing is needed most. This approach may be flawed on two counts, however. First, to run any form of biomanufacturing operation requires skilled people, and in such a situation they would not be readily available. Second, there are likely to be restrictions on movement between countries during a pandemic.

2. Strategic manufacturing locations. By having established operations strategically located, it should be possible to respond effectively to an emergency once the manufacturing process has been defined.

The ability to establish strategic manufacturing capacity and redeploy it for use by the government is not new. What is new is the potential offered by disposables technologies to make this much easier. To understand why, let's consider some of the issues that make it difficult to reconfigure a traditional facility:

  • integrated pipework and building
  • clean-in-place (CIP) and steam-in-place (SIP) systems
  • associated utility infrastructure
  • software
  • equipment.

Several of these issues are linked. For example, reusable equipment requires cleaning, sanitization, and sterilization between uses, and this requires a lot of piping and infrastructure, which then requires automation. CIP drives the requirement for high quality water (up to 80% of water for injection is used for cleaning).5 The promise of disposable manufacturing is that by making the processing equipment and flow paths single-use, a lot of the complexity disappears because the building is effectively decoupled from the process. The implications of this are significant:

  • Processes can be built up from stand-alone modules that can be reconfigured easily.
  • Processes are physically independent of the buildings in which they take place, thereby allowing the deployment of a process within any simple building structure.
  • A process can be upgraded and potentially scaled up with little disruption. For example, if you were using a 1,000-L bioreactor and you wanted to upgrade to 2,000 L, the larger bioreactor could be tested and validated off line and quickly moved in when needed.

Such a setup allows for a facility to be reconfigured for a new manufacturing process quickly—within 2 to 3 months. In addition, a facility can be designed to include cheap "fallow" space that could be quickly configured to provide new cleanrooms for a disposable manufacturing system (in 6 to 9 months) This then would allow a staged response to any emergency.


Figure 1. An artist rendering of Xcellerex's modular FlexFactory system.
We are now in a fortunate situation where a number of suppliers are committed to establishing a disposable manufacturing line that could support the idea of rapid response manufacturing. Listed below are some of the leading companies who are active in this area, along with their main product line that would aid rapid response:
  • GE Healthcare, ReadyToProcess
  • Millipore, Mobius
  • Xcellerex, FlexFactory.


Figure 2. Millipore Mobius manufacturing modules.
The companies' approaches vary. For example, Xcellerex provides each piece of equipment within its own process environment (Figure 1), thereby offering the potential of running a process in controlled-not-classified space. GE Healthcare and Millipore, in turn, offer solutions built around modules (Figure 2) that sit in a cleanroom environment.

The issues with these approaches are maturity and scale, although now with the advent of the 2,000-L disposable bioreactor, there is the option to use multiple bioreactors to achieve the desired capacity. The benefits of this approach are significant in terms of flexibility, speed of response, and cost. Xcellerex, for example, says that a greenfield site can be established in 12 to 18 months from start to operation and it would cost 50% less than a reusable facility.6


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

NIH Seeks to Improve Vaccine Response with New Adjuvants
September 30, 2014
New Report Details Players and Pipelines in the Biosimilar Space
September 30, 2014
Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
FDA and NIH Win Award for IP Licensing of Meningitis Vaccine
September 26, 2014
Author Guidelines
Source: BioPharm International,
Click here