Integrating Single-Use Connection Components into Filter Integrity Testing Reduces Manufacturing Risk - Single-use connections can help drug manufacturers maximize efficiency in every step of the manu


Integrating Single-Use Connection Components into Filter Integrity Testing Reduces Manufacturing Risk
Single-use connections can help drug manufacturers maximize efficiency in every step of the manufacturing process.

BioPharm International Supplements

Single-use Systems for Filter Integrity Testing

Bioprocessing facilities historically conducted filter integrity tests using hard-plumbed systems with replaceable filter elements in stainless steel filter housings that required time consuming set-up, validation, and post-production cleaning. Modern operations use stand-alone single-use systems or single-use components in combination with stainless steel processing equipment to reduce costs, maximize production efficiencies, and increase facility flexibility. Extending the use of single-use components to filter integrity testing is an additional way manufacturers can streamline the bioprocess and get product to market faster.

Single-use components used in filtration and filter integrity testing include disposable capsule filters, bags, tubing, clamps, and connectors. Connectors are a vitally important interface between the components in these filter systems. They also provide quick and easy integration of the subsystem into the larger production process. There is a wide range of connection technologies available, including:

  • standard connections used to quickly connect bioprocess fluid sources to filter assemblies
  • aseptic connectors that allow process technicians to connect two or more single-use systems together without introducing contaminants
  • aseptic disconnects that feature in-line valves to prevent contaminant ingress and fluid egress on disconnection
  • single-use steam-in-place (SIP) connectors that can be used to make sterile connections between single-use systems and stainless process equipment.

These single-use connections offer engineers flexibility in process design to minimize equipment downtime, and are particularly beneficial in multi-product facilities.

Post-filtration Testing for Upstream Processes and Buffer Preparation

In traditional stainless steel facilities, the ingredients for culture media or buffer are combined with water and mixed in a mixing tank. The media or buffer are then pumped through stainless steel filter housings containing sterilizing filter elements with pore sizes of 0.2–0.1 μm and directly into sterile hold tanks.

Figure 1. Single-use components that can replace some of the stainless steel equipment used in cell culture media and buffer preparation
Single-use components and systems can replace some or all of the stainless steel equipment used for culture media and buffer preparation (Figure 1). Single-use tank liners or specialty mixing bag systems can substitute for fixed mixing tanks. Bag systems with integrated capsule filters can replace both stainless filter housings and sterile hold tanks.

After the process fluid has been filtered into the sterile hold bag, the filter can be quickly and easily detached for post-filtration integrity testing using valved quick-disconnect couplings. The resulting aseptic disconnection allows technicians to confidently remove the filter without the risk of contaminating the contents stored in the holding bag, while also keeping the filter wetted for integrity testing. After removal, filters may be tested using automated equipment by bubble-point, gas diffusion, or pressure decay methods. After testing confirms filter integrity, the stored cell culture media may be released for continued processing.

In-process Pre-filtration Testing Between Purification Steps

Because of the high value of biopharmaceutical proteins, preventing product contamination is crucial when testing during downstream processes, such as between purification steps. In-process pre-filtration integrity testing verifies that filters are capable of removing biological contaminants before product filtering begins, allowing replacement of failed filters before processing. This additional step helps manufacturers avoid costly product loss or reprocessing.

Adopting single-use technology in the pre-filtration testing environment offers many of the same benefits as described in the post-filtration example. However, designing single-use filtration systems to facilitate pre-filtration testing requires additional components, including a flush collection bag and an optional flush solution supply bag.

Figure 2. A single-use filter assembly
Figure 2 illustrates a single-use filter assembly that allows in-process pre-filtration integrity testing. To ensure that no product is lost during testing, a compatible filter flush solution is used to wet the filter. Opening the flush clamps allows the solution to enter the tubing line to the filter; the flow clamps remain closed during the pre-filtration testing. After it is wetted, an automated test system pressurizes the non-sterile side of the filter membrane to verify its integrity through pressure decay. During testing, excess flush solution is captured in a collection bag.

If the integrity test fails, the entire filter assembly may be replaced before processing. After a successful test, the flush clamps are clamped off and the filter assembly is connected to the process equipment using standard connections. The filter is then connected to the sterile hold bag using an aseptic connector. The flow clamps are then opened and filtering can begin.

blog comments powered by Disqus



GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
Manufacturing Issues Crucial to Combating Ebola
November 20, 2014
FDA Requests Comments on Generic Drug Submission Criteria
November 20, 2014
USP Joins Chinese Pharmacopoeia Commission for Annual Science Meeting
November 20, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here