Tangential Flow Filtration for the Recovery of Acellular Pertussis Vaccine Components - Membrane-based TFF technology can ease scale-up and provide a higher recovery percentage compared to conventio

ADVERTISEMENT

Tangential Flow Filtration for the Recovery of Acellular Pertussis Vaccine Components
Membrane-based TFF technology can ease scale-up and provide a higher recovery percentage compared to conventional purification methods.


BioPharm International Supplements


Clarification of Fermentation Harvest

The TFF system was installed with a 0.45-μm open channel Prostak device (PVDF membrane, Millipore). The MF filtration module consisted of four stacks with total filtration area 0.34 m2. The system, fitted with the membrane, was flushed with 20-L water for injection (WFI). Integrity of the MF membrane and installation was checked by a diffusion test using an automated integrity testing machine (IT4, Millipore). The system was then drained. SIP of the system was conducted, steam pressure inside the system was maintained at 1.2 bar and 123 C for 30 min, and then the system was left at a positive pressure of 1 bar. The next day, it was observed that the system was at a positive pressure of 0.4 bar at 28 C.

Thirty litres of B. pertussis culture was transferred aseptically into the system tank and clarification was carried out at constant transmembrane pressure (TMP). A secondary peristaltic pump in the permeate side was used for permeate flow control. The feed was concentrated 10 times (30 to 3 L). Temperature, pressure, and volume were monitored at the feed, permeate, and retentate line during the operation.

Assay Methodologies

The PT and FHA were quantized by ELISA with purified antigens as standards. Microtiter plates (Nunc Maxisorp, Roskilde, Denmark) were coated with either sheep anti-PT antibody (PT ELISA) at a dilution of 1:4,000 or sheep anti-FHA antibody (FHA ELISA) at dilution of 1:12,000 in 50-mM sodium carbonate buffer (pH 9.6). Plates were incubated overnight at 2–8 C. Volumes of 0.1 mL were used in all steps and the plates were washed four times between incubations by using 100-mM phosphate-buffered saline containing 0.05% (w/v) Tween 20. The plates were blocked for 1 h at 37 C with 2% (w/v) bovine serum albumin (BSA) in phosphate-buffered saline (PBS; pH 7.4). The plates were washed and culture supernatants were serially diluted and added to the wells, and then the plates were incubated at 37 C for 1 h. Mouse anti–PT at dilution of 1:1,000 and mouse anti-FHA at dilution of 1:500 in 1% (w/v) BSA in phosphate-buffered saline (PBS; pH 7.4) were added to the plates. The plates were incubated for 1 h at 37 C. Bound antigen was detected by using goat antimouse horse reddish peroxidase conjugate with a dilution of 1:7,000 (PT ELISA) and 1:10,000 (FHA-ELISA) in 1% BSA in phosphate-buffered saline. The plates were incubated for 1 h at 37 C and were washed and developed with tetramethylbenzidine and 0.006% hydrogen peroxide in 100 mM citrate-phosphate buffer, pH 5.0. The reaction was stopped by adding 2NH2SO4. The enzyme substrate reaction that developed at 37 C was measured at 450 nm on a Universal Microplate reader (EL-800 with KC4 data analysis software, BioTek Instruments, Inc., Vermont, MA).


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here