Advancing Vaccine Technology to Combat Global Pandemic Threats - New technologies such as virus-like particles are promising weapons in the battle against pandemic influenza. - BioPharm International


Advancing Vaccine Technology to Combat Global Pandemic Threats
New technologies such as virus-like particles are promising weapons in the battle against pandemic influenza.

BioPharm International Supplements

Fermentation Process

The final decision on the expression system of choice will be determined by the effect of post-translational modification (PTM) on product efficacy. However, where there are no specific PTM requirements, microbial-based production platforms gain an advantage. Previous resistance to using such systems, for instance in the production of Fab-based therapies have centred around the limitation for manipulation of vH to vL expression levels, which can affect both productivity and product efficacy. However, advances in transcriptional regulatory elements mean that coordinated control of these and other multicomponent products can be optimized to significantly increase process titers while assisting in the decrease of normally associated product impurities.

In the VLP vaccine arena, various companies have focussed their attention on decreasing development timelines while increasing product titers through the use of alternative cell-culture–based systems. Novavax, Inc. (Rockville, MD), has focussed on a rapid development strategy for a VLP product targeted toward emerging influenza viruses, which has resulted in a concomitant increase in both product potency and significant relative dose yields compared to the traditional egg-based manufacturing systems. An effective vaccine can be manufactured in approximately 10–12 weeks from the point of strain identification while clearly the requirement for scale in response to required doses has been significantly reduced. However, typical process (raw material) cost of goods may still remain high.

More recently, the development of effective vaccine treatments through yeast and E. coli-based VLP production platforms have further decreased development and manufacturing timelines and scale requirements while further increasing patient safety. With the development of platform downstream processing strategies and estimated recoveries in the region of 50–60%, even small-scale bioreactors remain a firm target for manufacturing campaigns using these systems. Indeed, estimated dose yields post purification are in the region of 500–1,000/L while development and manufacturing program timelines are expected to halve those associated with historical tissue-culture–based systems.

Downstream Processing

Figure 3. Platform purification strategy for the production of virus like particles
A platform approach to the purification process can also be adopted. The size of the particles can be advantageous during the purification process allowing generic steps to be developed. One such purification strategy is outlined in Figure 3.

The process broadly consists of cell harvest to separate the cells from the fermentation media, resuspension into a controlled, buffered environment, and cell lysis through high-pressure cell disruption. The bulk of the cellular debris is then cleared from the solution by microfiltration and the process solution concentrated and buffer exchanged using a high molecular weight cut-off TFF system. Further purification and polishing can then be achieved using anion exchange (AEX) and size exclusion chromatography.

Harvest and Cell Disruption

VLPs are produced as an intracellular product from a microbial production system. They must be released into the process stream to allow for subsequent purification. This can be achieved by several means, the most common being the use of high-pressure lysis. This is a process whereby the process solution is forced through a small fixed orifice at high pressure. The rapid transfer of the sample from a region of high pressure to one of low pressure causes cell disruption.

This type of cell disruption is by far the most efficient and reproducible but does have a number of drawbacks in processing of VLPs. The extremely high shear not only lyses the cells but also micronizes the cellular debris; this coupled with the large size of the VLPs themselves can make the subsequent clarification step problematic. Careful attention must be paid during the development of such a step to strike a balance between cellular disruption and the release of the VLPs into the process medium and the micronization of cellular debris to avoid fouling issues further downstream in the production process.


A number of options are available for clarification including centrifugation, depth filtration, or micro-filtration to name a few. Generally, microfiltration is the preferred option as it is well established in the biopharmaceutical industry as a scalable and robust clarification technique. Whichever technique is used, this clarification step may be problematic post high-pressure lysis.

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here