Innovations in Intranasal Vaccine Delivery Technology - Needle-free vaccine delivery platforms can solve the problems of stockpiling, cold-chain management, and pandemic preparedness. - BioPharm

ADVERTISEMENT

Innovations in Intranasal Vaccine Delivery Technology
Needle-free vaccine delivery platforms can solve the problems of stockpiling, cold-chain management, and pandemic preparedness.


BioPharm International Supplements


The VRx2 Delivery Platform

Vaccine formulations typically require cold-chain storage and transport to ensure their continued stability. However, a cold-chain requirement is difficult to impractical in applications involving large populations situated in geographic regions or nations that lack an established healthcare infrastructure, in clinical settings where refrigeration of vaccine doses may not always be accessible or reliable, and in crisis situations. Lyophilized or spray-dried vaccine powders are used to reduce the need for cold-chain management because they can ultimately be reconstituted to their original formulations by the addition of a diluent at point of use.

Development of a lyophilized or spray-dried intranasal vaccine powder that could be easily reconstituted in situ with a liquid diluent in a sterile environment in a delivery device could represent an ideal solution. Such a capability would also eliminate the current use of sterile vials for mixing and the associated risk for vaccine contamination during dissolution reconstitution.

The VRx2 intranasal delivery platform under development by Mystic Pharmaceuticals has the potential to reduce the risks and costs currently encountered with vaccine or drugs that require reconstitution. Reconstitution just before intranasal administration eliminates the need for cold-chain storage and distribution. VRx2 delivery systems provide an auto-reconstitution capability in each delivery device. Each VRx2 blister contains the sterile freeze-dried vaccine and the sterile diluent solution in separate reservoirs. On activation at the point of use, the vaccine powder is mixed with the diluent to accomplish in situ reconstitution in the delivery system, followed by intranasal delivery. Intranasal delivery enables self-administration and reduces the dependency on a trained healthcare provider.

Conclusion

Dry powder vaccine technology, the VersiDoser, and VRx2 delivery platforms provide convenient and easy dispensing approaches to needle-free administration of a wide range of vaccine products. The delivery devices based on these technologies are modular, compact, disposable after use, and can be used for self-administration. The production methods are very amenable to scale-up and to rapid production and distribution in the event of a significant disease outbreak.

The VRx2 reconstitution technology platform further eases the storage space and cold-chain requirements for maintaining vaccine stockpiles by federal and local governments and their respective agencies. It is suggested that these technologies may prove useful to applications in the development of global vaccine products, to assist a transition to noninvasive needle-free inoculations in pandemic planning and response, and potentially to reduce present cold-chain management requirements.

TIMOTHY SULLIVAN is the president and CEO, IRACH TARAPOREWALA, PhD, is the vice president of regulatory affairs and clinical research, and WALTER ZIELINSKI, PhD is senior scientist, program development, all at Mystic Pharmaceuticals, Inc., Austin, TX, 512.918.2900,

References

1. Zielinski WL, Sullivan TR, Berens KL. Transnasal drug delivery—an expanding technology. In: Drug Delivery 2007. Touch Briefings, Cardinal Tower, London, England, pp. 41–43.

2. Swift DL. Aerosol deposition and clearance in the human upper airways. Annals Biomed Eng. 1981;9:593–604.

3. Suman JD. Nasal drug delivery. Exp Opin Biolog Therapy. 2003;3(3):519–23(5).

4. Mutsch M, Zhou W, Rhodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N England J Med. 2004;350:896–903.

5. Zhou W, Pool V, DeStefano F, et al., A potential signal of Bell's palsy after parenteral inactivated influenza vaccines: reports to the Vaccine Adverse Event Reporting System (VAERS)—United States, 1991–2001. Pharmacoepidemiol. Drug Safety. 2004;13:505–10.

6. Huang J, et al. Intranasal administration of dry powder anthrax vaccine provides protection against lethal aerosol spore challenge. Hum Vaccines. 2007;3:90–3.

7. Shaw M, Sullivan T, Zielinski W. Unit-dose aseptic packaging of nasal drugs. Inhalat. 2008;2:8–11.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Lilly to Acquire Novartis Animal Health
April 22, 2014
Novartis and GSK Trade Assets
April 22, 2014
Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
EMA Warns of Falsified Herceptin Vials
April 16, 2014
American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here