A Closer Look at Automated In-Line Dilution - Automated in-line dilution can help solve capacity, financial, and quality concerns that biopharmaceutical manufacturing plants may be facing. - BioPharm

ADVERTISEMENT

A Closer Look at Automated In-Line Dilution
Automated in-line dilution can help solve capacity, financial, and quality concerns that biopharmaceutical manufacturing plants may be facing.


BioPharm International
Volume 22, Issue 10

Control Instrumentation

Control instrumentation monitors the control parameters for solution input to the system, and monitors parameters measuring the attributes of the diluted solution. The following are used:


Figure 8
Mass flow meters. A mass flow meter uses the Coriolis effect to measure the changes in vibration of a pipe as mass flows through it. Because there are no moving parts, this results in a reliable instrument that does not wear out and is not likely to drift out of calibration (Figure 8).


Figure 9
Conductivity sensors. Conductivity is impacted by the amount and type of ionic chemicals such as metals and salts in the solution. It is also impacted by solution temperature; therefore, adjustments must be made to compensate for this effect (Figure 9).


Figure 10
pH sensors. pH is affected by temperature, but some sensors can automatically measure and compensate for temperature. Caution must be taken for product solutions that are at the extremes of the pH scale (~0 or ~14) because some sensors cannot measure at these ranges and can be damaged by these harsh solutions, which is referred to as "pH poisoning," Figure 10).

Photometric sensors. Photometric sensors include UV and NIR spectrometers. This family of sensors uses specific wavelength light to determine the chemical composition of the solution. The instrument passes light through the solution to a detector on the other side, and then relays the information back to the computer for evaluation.

Programmable Logic Controller (PLC)

The PLC is a computer that contains a specific list of instructions, known as the program or code, for the equipment to follow. It also collects all of the information from the sensors on the skid and uses the data to determine if the process is operating in the acceptable limits. If not, it will attempt to correct the process to maintain it in the acceptable limits. The program alerts the operator of unsafe or out-of-specification conditions and may stop the process completely if the equipment is not able to correct the problem.

PROCESS MATERIALS

The process materials are mixed to prepare the final diluted solution of interest, as described in the following:

Process solution concentrate. In many cases, concentrates can be purchased or prepared in concentrations of 10x or more. Concentrates can be supplied in disposable flexible bags or be prepared in existing solution preparation vessels.

Diluting agent or diluent. Water is the most common diluent. The specific grade of water required depends on the specifications of the final product. Other diluting agents such as isopropyl alcohol are also possible, which must be evaluated for material compatibility and equipment safely.

OPERATION

The dilution skids can operate continuously for long periods of time and remain extremely reliable. The processes are usually designed with a number of precautionary measures to keep the equipment running. For example, redundant measurements can be used for pH and conductivity. This means that there are two sensors for each measurement. In the event that the primary sensor drifts out of tolerance or fails, the secondary sensor takes over and sounds an alarm to alert the operator of the event. Alarms are the second precautionary measure. Since the skids are automated, the operator does not need to attend to the process at all times. The alarms communicate any unusual conditions through messages on the screen, audible horns, or even through plant monitoring systems.

MAINTENANCE CONSIDERATIONS

Post-validation and qualification maintenance and monitoring are important to ensure reliable operation of the equipment. The following items should be considered:

Preventive maintenance. The equipment supplier for each of the components should provide recommended maintenance procedures and the appropriate intervals to perform each procedure in order to maintain optimal working condition.

Calibration. The factors involved in determining the calibration frequency can include: critical versus non-critical measurements, the number of batches produced between calibrations, and the calibration history of the instrument.

Cleaning. The cleaning of an in-line dilution skid is accomplished by automated clean-in-place (CIP) procedures, which are much preferable to those of a traditional process involving human interaction that introduces error and subjectivity into the process. Automated processes are highly repeatable and reliable when designed and validated correctly. This again reinforces the concept of QbD.

Steam sanitization and sterilization. All components and piping must be designed properly to eliminate crevices and ensure steam will contact all surfaces. All components must also be compatible with the high temperatures of a steaming process (typically 121 C). Any moving parts, such as pumps, must be designed with sufficient clearances to allow for the expansion of the metal as the parts increase in temperature.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

GSK Submits EU Regulatory Filing for Malaria Vaccine Candidate
July 29, 2014
Bristol-Myers Squibb and Ono Pharmaceutical Collaborate on Immunotherapies
July 28, 2014
FDA Accepts First Biosimilar Filing
July 24, 2014
Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
Author Guidelines
Source: BioPharm International,
Click here