Analytical Tools for Process and Product Characterization - Select the best approach to determine critical quality attributes. - BioPharm International


Analytical Tools for Process and Product Characterization
Select the best approach to determine critical quality attributes.

BioPharm International
Volume 22, Issue 8


N-linked oligosaccharide mapping is routinely performed as an in-process test for recombinant glycoproteins derived from mammalian cell lines. Reasons include the complexities associated with processing Asparagine-linked (N-linked) oligosaccharides and the sensitivity of the enzymes involved, to even subtle changes in cell culture conditions during manufacturing. In addition, oligosaccharide mapping as a potential component of product lot release is increasingly requested from regulatory agencies for consideration.16

Standard methodologies contain several bottlenecks with respect to throughput. First, the sample preparation required for analysis is both laborious and time-consuming, requiring multiple steps of hands-on manipulation by the analyst. Second, the typical separation methods used have cycle times ranging from 90 to 180 minutes.17,18 In instances where multiple cell culture conditions are being screened or large numbers of in-process samples are being tested, the resulting analysis sequence can take days. In addition, the mobile phases typically used in the separation of oligosaccharides are not compatible with online MS analysis, requiring the collection of multiple fractions and additional sample manipulation before MS analysis, providing another bottleneck in the characterization stage.

We have implemented methodologies to address each of these throughput constraints. Through the use of robotic liquid handling, automated sample preparation, and rapid resolution reverse phase chromatography (RRRP–HPLC), we are able to completely process 30 samples per 24 hour period for oligosaccharide analysis, from the point of initial enzymatic digestion through full MS characterization of species accounting for as little as 0.1% of the oligosaccharide moiety.19,20 A traditional sample preparation scheme involves removal of deglycosylated protein by porous graphitized carbon (PGC) following PNGase F digestion, vacuum centrifugation before labeling with the fluorophore, and finally, removal of excess fluorophore and labeling reaction components using a cellulose phase matrix (S-cartridge) with subsequent vacuum centrifugation. We have implemented methodologies that replace these manually operated PGC and S-cartridges with PhyTip columns (Phynexus, Inc.) packed with Carbopack B and DPA-6S resins that are compatible with robotic platforms.

Figure 2. Comparison of samples prepared by automated and standard methods and separated by high pH anion exchange chromatography
A total of six identical PNGase F digestions were performed on 500 ug aliquots of a recombinant IgG. Three of the digests were processed following traditional protocols and the remaining samples were processed following the automated method. Samples analysis was performed by traditional high pH anion exchange chromatography (HPAEC). An overlay of the resulting chromatograms is shown in Figure 2. No significant differences were observed in the chromatograms obtained by the two preparation methods. In addition to requiring limited analyst manipulation during preparation, the samples prepared following the automated protocol were ready for analysis at the end of Day 1, whereas samples prepared following the standard protocol were not ready for analysis until the start of Day 3.

Figure 3. Comparison of flow schemes for standard and automated methodologies for oligosaccharide analysis
The most commonly used separation methods for oligosaccharide analysis are HPAEC and normal phase chromatography (NP–HPLC). The mobile phases used for these separations are not compatible with online MS characterization. Reverse phase (RP–HPLC) separations have been described previously, and provide superior resolution of species compared to HPAEC and NP–HPLC methods.18 However, with cycle times of three hours, they are not suitable for routine analysis. As seen in Figure 4, we have developed a method that takes advantage of new small particle-size resins available from column manufacturers. A batch of 30 samples from cell culture screening conditions can be prepared, separated, and characterized in 24 h using this approach with the chromatographic cycle time dramatically reduced relative to traditional RP–HPLC. This RRRP–HPLC method has a cycle time of 35 minutes, provides comparable resolution to standard RP–HPLC, and is compatible with online ESI–MS/MS detection with a limit of detection (LOD) of <20 fmol by fluorescence and ~1 pmol by MS. Using this approach, full characterization of the oligosaccharide map, including species accounting for as little as 0.1% of the total moiety, can be achieved in a timeframe that is competitive with basic profile fingerprinting achieved by standard capillary zone electrophoresis (CZE) methods. An example separation for an rIgG is shown in Figure 4. For this particular rIgG, a total of 36 unique species were identified from a single sample injection.

Figure 4. Typical separation by reverse-phase of an N-linked oligosaccharide pool from an rIgG
Through the combination of improvements in sample preparation and chromatographic cycle time, we are now able to perform complete characterization of an oligosaccharide map in a single day, providing a minimum of a five-fold reduction in process time. In addition, because of the short cycle time required by the RRRP–HPLC and compatibility with online MS detection, thorough MS analysis can be incorporated as part of routine sample analysis.

blog comments powered by Disqus



GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
Manufacturing Issues Crucial to Combating Ebola
November 20, 2014
FDA Requests Comments on Generic Drug Submission Criteria
November 20, 2014
USP Joins Chinese Pharmacopoeia Commission for Annual Science Meeting
November 20, 2014
Author Guidelines
Source: BioPharm International,
Click here