On the Horizon: New Expression Systems to Become Common Industry Platforms - New expression systems compete for attention. - BioPharm International


On the Horizon: New Expression Systems to Become Common Industry Platforms
New expression systems compete for attention.

BioPharm International
Volume 22, Issue 6


Table 1. Select novel expression systems and commercial sources1
Table 1 lists some of the expression systems in development and their sources (the main commercial licensing organizations). These systems include an incredible variety of organisms being transformed for recombinant protein expression, including algae, both unicellular and whole plants; glycolysis in diverse yeasts, animal cells and even plants; moss; coconut cells; Drosophila mosquitoes; fungi, including unicellular and whole plants; chicken stem cells; tobacco and other agricultural commodity plants in cell culture, greenhouses and open fields; bacteria long used in for nonpharmaceutical industrial manufacture, including Bacillus subtilis; cell lines targeted as replacements for CHO cells, including NS0 and HEK-292 cell lines; diverse yeasts, including those engineered to have human-like glycosylation; shrimp and other aquatic animals; protozoa; transgenic animals of all types; novel bacteria, such as Caulobacter, Staphylococcus and Clostridia species; Pseudoalteromonas haloplanktis, a cold-growing bacterium from Antarctica; stripped-down E. coli; and even totally cell-free systems.

As strange as it may now seem, in coming years, you will likely be using multiple expression systems. The biotechnology community should welcome these manufacturing platforms and follow their development because they offer wide-open options for improvements and alternatives to the currently dominant E. coli, yeast, and CHO systems. In many cases, the economics and increased simplicity and convenience of newer systems will expand their use. Currently, only a small portion of those involved in recombinant protein or MAb manufacture are familiar with more than just a few of the upcoming technologies. So, there are still ample opportunities to stake one's claim before others jump in and catch up by taking options to license effective expression systems.

Eric S. Langer is president and managing partner at BioPlan Associates, Inc., Rockville, MD, 301.921.5979,
He is also a member of BioPharm International's editorial advisory board.


1. Rader RA. Biopharmaceutical expression systems and genetic engineering technologies: current and future manufacturing platforms. BioPlan Associates. Rockville, MD; 2008 Oct. Available from: http://www.bioplanassociates.com/es/index.htm.

blog comments powered by Disqus



Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Lundbeck CEO Resigns Due to Code of Conduct Breach
November 24, 2014
Janssen Partners with Transposagen Biopharmaceuticals for CAR-T Therapies
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here