Best Practices for Formulation and Manufacturing of Biotech Drug Products - How to maintain product stability and prevent particulates. - BioPharm International

ADVERTISEMENT

Best Practices for Formulation and Manufacturing of Biotech Drug Products
How to maintain product stability and prevent particulates.


BioPharm International
Volume 22, Issue 6

Problems arising from insoluble aggregate formation in biologics development along with approaches to detect and characterize the aggregate species have been a focus for regulators and the biotech industry lately. It has been suggested that our understanding of aggregation pathways and how to inhibit aggregation remains relatively poor and that it is challenging to characterize the whole size range of particulates for a given biologics formulation.6 The United States Pharmacopeia and the harmonized versions of the European and Japanese Pharmacopoeias set limits and cite enumeration methods for sub-visible, foreign particulate matter in parenteral products.7–9 A significant presence of particles, whether they are product-related or foreign, may not only compromise the efficacy or the drug product but also present a safety issue.10 One important factor is potential immunogenicity, which can be a result of poor quality of the protein product.11,12 The quality of a product can be affected by the presence of various degradation products such as particulates and aggregates and also by chemical modifications of the protein molecule. Protein particles typically are a result of the aggregation of structurally altered monomers and or dimers, resulting in the insolubility of the species. Aggregates or multimers can be categorized as either large or small in size.13 Small aggregates can range from dimers to multimers that can be detected by size exclusion chromatography and dynamic light scattering, with a size range of 0.1 to 1 μm. Larger aggregates can be classified as sub-visible which are 2 to 100 μm in size and detected by light obscuration methods such as the HIAC Royco liquid particle counter and microscopy. Visible particles are detected by the naked eye and can either be visible (>40 μm) or sub-visible and typically are detected by visual methods or light obscuration instruments, respectively. The size range of the protein particle can vary from <1 μm to >400 μm. In the sub-visible size range, injectable liquid formulations must comply with the pharmacopeial limit of: not <6,000 particles for the 10 μm range and not <600 particles for the 25 μm range.

ENSURING PROTEIN STABILITY DURING FROZEN STORAGE

Freezing biologics at large-scale is carried out in various ways, from improvised to custom-designed systems. The simplest storage method involves filling the bulk solution into bottles or carboys of appropriate size and storing in freezers. These containers are often made of polyethylene or polypropylene, although steel (e.g., SS316L) can be used for small volumes. Their advantage is simplicity. Disadvantages include a lack of active control and potential variability between containers, as well as multiple container–closures to secure against contamination. The procedure for preparation, loading, and placement in the freezer has to be well defined to reduce this variability. Thawing is generally performed by placing containers in a refrigerator or at room temperature. In the absence of an active thawing mechanism, thaw times can be quite long (possibly days) depending on the size of the container. During this period, significant concentration and temperature gradients can exist in the container if it is not actively shaken or agitated. Practical handling considerations limit the size to about 20-L carboys, although 50-L sizes are possible. The system is simple, however, and if the protein formulation is stable under a wide range of freeze–thaw conditions and can withstand cryoconcentration, the bottle or carboy system may be the preferred mode of operation.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Author Guidelines
Source: BioPharm International,
Click here